BASys (Bacterial Annotation System) is a web server that supports automated, in-depth annotation of bacterial genomic (chromosomal and plasmid) sequences. It accepts raw DNA sequence data and an optional list of gene identification information and provides extensive textual annotation and hyperlinked image output. BASys uses >30 programs to determine ∼60 annotation subfields for each gene, including gene/protein name, GO function, COG function, possible paralogues and orthologues, molecular weight, isoelectric point, operon structure, subcellular localization, signal peptides, transmembrane regions, secondary structure, 3D structure, reactions and pathways. The depth and detail of a BASys annotation matches or exceeds that found in a standard SwissProt entry. BASys also generates colorful, clickable and fully zoomable maps of each query chromosome to permit rapid navigation and detailed visual analysis of all resulting gene annotations. The textual annotations and images that are provided by BASys can be generated in ∼24 h for an average bacterial chromosome (5 Mb). BASys annotations may be viewed and downloaded anonymously or through a password protected access system. The BASys server and databases can also be downloaded and run locally. BASys is accessible at .
An algorithm is presented for determining all solutions of the Einstein field equations representing a perfect fluid with metric of the form ds2=dt2−e2αdz2 −e2β(dx2+dy2) and fluid flow vector u=∂/∂t. The entire class of solutions is then invariantly characterized. These new solutions generalize Szekeres’ inhomogeneous cosmological models containing dust. A subclass of these solutions is studied in detail and it is interesting that some of these models approach isotropy but not homogeneity for large cosmological times.
We have constructed five machine-learning classifiers for predicting subcellular localization of proteins from animals, plants, fungi, Gram-negative bacteria and Gram-positive bacteria, which are 81% accurate for fungi and 92-94% accurate for the other four categories. These are the most accurate subcellular predictors across the widest set of organisms ever published. Our predictors are part of the Proteome Analyst web-service.
Proteome Analyst (PA) (http://www.cs.ualberta.ca/~bioinfo/PA/) is a publicly available, high-throughput, web-based system for predicting various properties of each protein in an entire proteome. Using machine-learned classifiers, PA can predict, for example, the GeneQuiz general function and Gene Ontology (GO) molecular function of a protein. In addition, PA is currently the most accurate and most comprehensive system for predicting subcellular localization, the location within a cell where a protein performs its main function. Two other capabilities of PA are notable. First, PA can create a custom classifier to predict a new property, without requiring any programming, based on labeled training data (i.e. a set of examples, each with the correct classification label) provided by a user. PA has been used to create custom classifiers for potassium-ion channel proteins and other general function ontologies. Second, PA provides a sophisticated explanation feature that shows why one prediction is chosen over another. The PA system produces a Naïve Bayes classifier, which is amenable to a graphical and interactive approach to explanations for its predictions; transparent predictions increase the user's confidence in, and understanding of, PA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.