The number of individuals suffering from fatty liver is increasing worldwide, leading to interest in the noninvasive study of liver fat. Magnetic resonance spectroscopy (MRS) is a powerful tool that allows direct quantification of metabolites in tissue or areas of interest. MRS has been applied in both research and clinical studies to assess liver fat noninvasively in vivo. MRS has also demonstrated excellent performance in liver fat assessment with high sensitivity and specificity compared to biopsy and other imaging modalities. Because of these qualities, MRS has been generally accepted as the reference standard for the noninvasive measurement of liver steatosis. MRS is an evolving technique with high potential as a diagnostic tool in the clinical setting. This review aims to provide a brief overview of the MRS principle for liver fat assessment and its application, and to summarize the current state of MRS study in comparison to other techniques.
AIMTo assess the association between liver fat content (LFC) and weight status in young adults using proton magnetic resonance spectroscopy (1H MRS) technique.METHODSSeventy-eight healthy young adults, between 19-30 years of age participated in this study. This group was then separated into a control of 39 subjects and an overweight/obese group (OW/OB group) consisting of 39 subjects. Blood biochemical quantity and 1H MRS was performed for LFC assessment.RESULTSLFC was found to be almost three times higher in OW/OB group when compared to the control group. A 48.7% incidence of non-alcoholic fatty liver disease in the OW/OB group was found. Blood biochemical measurements showed statistically higher low-density lipoproteins and triglyceride, lower high-density lipoproteins, and increased glycosylated hemoglobin and fasting glucose in the OW/OB group. Body mass index was a significant independent predictor for LFC after adjusting for age and sex (multiple linear regression; β = 0.459, P < 0.001).CONCLUSIONDue to the prevalence of high LFC in the OW/OB group, it can be proposed that weight gain and obesity are sensitive indicators of high hepatic fat content.
Young adulthood is increasingly considered as a vulnerable age group for significant weight gain, and it is apparent that there is an increasing number of new cases of metabolic syndrome developing among this population. This study included 60 young adult volunteers (18–26 years old). All participants obtained a calculated total abdominal fat percentage, subcutaneous fat percentage, and visceral fat percentage using a semiautomatic segmentation technique from T1-weighted magnetic resonance imaging (MRI) images of the abdomen. The results show strongest correlation between abdominal fat and BMI (r = 0.824) followed by subcutaneous fat (r = 0.768), and visceral fat (r = 0.633) respectively, (p < 0.001 for all, after having been adjusted for age and gender). Among anthropometric measurements, waist circumference showed strong correlation with all fat compartments (r = 0.737 for abdominal, r = 0.707 for subcutaneous fat, and r = 0.512 for visceral fat; p < 0.001 for all). The results obtained from examining the blood revealed that there was a moderate positive correlation relationship between all fat compartments with triglyceride, high-density lipoprotein, and fasting glucose levels (p < 0.05 for all). This study suggests that both BMI and waist circumference could be used to assess the fat compartments and treatment targets to reduce the risk of metabolic disorders and health risks in the young adult population.
Background
Overweight (OW) is considered a risk for various metabolic diseases. However, its effects as a mechanism that alters the metabolite profiles remain unclear. The purpose of this study is to investigate the effects that OW has on the lipid and metabolite profiles in young adults.
Methods
The serum metabolite profiles of 46 young adults of normal weight and those considered OW were studied by Proton nuclear magnetic resonance spectroscopy (1H NMR) technique.
Results
1H NMR metabolite analysis shows the alteration of metabolic levels and increased levels of CH2 lipids and CH3 lipids, which are used as unique biomarkers to identify OW subjects from the normal weight groups.
Conclusion
This present study reveals that OW contributes to the systemic metabolism and the metabolite alteration among young adults. The alteration in serum lipids level could shed the light on metabolic syndrome pathogenesis in young adults and needs further elucidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.