Relationships between ligand binding and the shapes of the binding sites in families of homologous enzymes are investigated by comparing matrices of distances between key binding site atoms. Multiple linear regression is used to help identify key distances that influence ligand binding affinity. In order to illustrate the utility of this generic approach, we study protein kinase binding sites for ATP and the promiscuous competitive inhibitor, staurosporine. We show that the size of the gatekeeper residue and the closure between the first glycine of the GXGXXG motif and the aspartate of the DFG loop act together to promote tight binding. Our web-based tool, ‘mapping analogous hetero-atoms onto residue interactions’ (MAHORI), indicates that the greater the number of hydrogen bonds made by the kinase around the methylamine group of staurosporine, the tighter the binding. The conservation of surrounding atoms identified using our novel grid-based method clearly demonstrates that the most structurally conserved part of the binding site for staurosporine is the main chain of the hinge region. The critical role of interactions that are not dependent on side-chain identities is consistent with the promiscuous nature of this inhibitor.
BackgroundChikungunya fever (CHIKF) is a recently re-emerged mosquito transmitted viral disease caused by the chikungunya virus (CHIKV), an Alphavirus belonging to the family Togaviridae. Infection of humans with CHIKV can result in CHIKF of variable severity, although the factors mediating disease severity remain poorly defined.MethodsWhite blood cells were isolated from blood samples collected during the 2009-2010 CHIKF outbreak in Thailand. Clinical presentation and viral load data were used to classify samples into three groups, namely non chikungunya fever (non-CHIKF), mild CHIKF, and severe CHIKF. Five samples from each group were analyzed for protein expression by GeLC-MS/MS.ResultsCHIKV proteins (structural and non-structural) were found only in CHIKF samples. A total of 3505 human proteins were identified, with 68 proteins only present in non-CHIKF samples. A total of 240 proteins were found only in CHIKF samples, of which 65 and 46 were found only in mild and severe CHIKF samples respectively. Proteins with altered expression mapped predominantly to cellular signaling pathways (including toll-like receptor and PI3K-Akt signaling) although many other processes showed altered expression as a result of CHIKV infection. Expression of proteins consistent with the activation of the inflammasome was detected, and quantitation of (pro)-caspase 1 at the protein and RNA levels showed an association with disease severity.ConclusionsThis study confirms the infection of at least a component of white blood cells by CHIKV, and shows that CHIKV infection results in activation of the inflammasome in a manner that is associated with disease severity.
Divergent evolution of proteins reflects both selectively advantageous and neutral amino acid substitutions. In the present article, we examine restraints on sequence, which arise from selectively advantageous roles for structure and function and which lead to the conservation of local sequences and structures in families and superfamilies. We analyse structurally aligned members of protein families and superfamilies in order to investigate the importance of the local structural environment of amino acid residues in the acceptance of amino acid substitutions during protein evolution. We show that solvent accessibility is the most important determinant, followed by the existence of hydrogen bonds from the side-chain to main-chain functions and the nature of the element of secondary structure to which the amino acid contributes. Polar side chains whose hydrogen-bonding potential is satisfied tend to be more conserved than their unsatisfied or non-hydrogen-bonded counterparts, and buried and satisfied polar residues tend to be significantly more conserved than buried hydrophobic residues. Finally, we discuss the importance of functional restraints in the form of interactions of proteins with other macromolecules in assemblies or with substrates, ligands or allosteric regulators. We show that residues involved in such functional interactions are significantly more conserved and have differing amino acid substitution patterns.
Here we review the use of informatics in structural interactomics, with particular emphasis on understanding interfacial contacts in the development of novel therapeutics and the interpretation of genetic variation. We describe the availability and applicability of structural databases of protein interactions which facilitate this endeavour. We demonstrate the applicability of a structural interactomics approach to the study of the fibroblast growth factor (FGF)-stimulated mitogen-activated protein kinase (MAPK) pathway.
Highlights d This work extends our MANORAA platform for analyzing protein-ligand interactions d We provide algorithms to interpret drug binding affinities proven experimentally d Molecular anchors and effects of distance descriptors guide drug design d MANORAA also pinpoints the drug's side effects and target organs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.