Background. We propose a 1-1-12 wash-in scheme for desflurane-nitrous oxide (N2O) low-flow anesthesia. The objective of our study was to determine the time to achieve alveolar concentration of desflurane (FAD) at 1, 2, 3, 4, 5, and 6%. Methods. We enrolled 106 patients scheduled for elective surgery under general anesthesia. After induction and intubation, wash-in was started with a fresh gas flow (FGF) of N2O : O2 1 : 1 L min−1 and vaporizer concentration of desflurane (FD) of 12%. Ventilation was controlled to maintain PACO2 at 30–35 mmHg. Results. The FAD rose rapidly from 0 to 4% in 2 min in a linear manner in 0.5 min increments. An FAD of 6% was achieved in 4 min in a linear fashion from FAD of 4% but in 1 min increments. An FAD of 1 to 6% occurred at 0.6, 1, 1.5, 2, 3, and 4 min. Heart rate during wash-in showed a statistically, albeit not clinically, significant pattern of increase. By contrast, blood pressure slightly decreased during this period. Conclusions. We developed a 1-1-12 wash-in scheme using a FGF of N2O : O2 1 : 1 L min−1 and FD of 12% for desflurane-nitrous oxide low-flow anesthesia. A respective FAD of 1, 2, 3, 4, 5, and 6% can be expected at 0.6, 1, 1.5, 2, 3, and 4 min.
BackgroundWe reported a 1-1-12 wash-in scheme for desflurane-nitrous oxide (N2O) low flow anesthesia that is simple, rapid, and predictable. There remain some situations where N2O should be avoided, which limits the generalizability of this wash-in scheme. The objective of our study was to determine the performance of this scheme in contexts where N2O is not used.MethodsWe recruited 106 patients scheduled for elective surgery under general anesthesia. After induction and intubation, wash-in was started with a fresh gas flow of air:O2 1:1 L/min and a vaporizer concentration of desflurane of 12%. Controlled ventilation was then adjusted to maintain PACO2 at 30–35 mmHg.ResultsThe alveolar concentration of desflurane (FAD) rose rapidly from 0% to 6% in 4 minutes in the same pattern as observed in our previous study in which N2O was used. An FAD of 7% was achieved in 6 minutes. An FAD of 1% to 7% occurred at 0.6, 1, 1.5, 2, 3, 4, and 6 minutes. The rise in heart rate during wash-in was statistically significant, although not clinically so. There was a slight but statistically significant decrease in blood pressure, but this had no clinical significance.ConclusionPerformance of the 1-1-12 wash-in scheme is independent of the use of N2O. Respective FADs of 1%, 2%, 3%, 4%, 5%, 6%, and 7% can be expected at 0.6, 1, 1.5, 2, 3, 4, and 6 minutes.
Background The Analgesia Nociception Index (ANI) has been suggested as a non-invasive guide for analgesia. Our objective was to compare the efficacy of ANI vs. standard pharmacokinetic pattern for guiding intraoperative fentanyl administration. Methods This was a prospective, randomized, controlled study of adult female patients undergoing elective mastectomy under general anesthesia. The patients were randomized to the ANI-guided group receiving a loading dose of 75 μg of fentanyl followed by 25 μg when the ANI score was under 50. The Control group received the same loading dose followed by 25 μg every 30 min with additional doses when there were signs of inadequate analgesia (viz., tachycardia or hypertension). Results Sixty patients—30 in each group—were recruited. Although the actual mean ANI score was higher in the ANI-guided than in the Control group (mean difference 2.2; 95% CI: 0.3 to 4.0, P = 0.022), there was no difference in the primary outcome—i.e., intraoperative fentanyl consumption (mean difference − 4.2 μg; 95% CI: − 24.7 to 16.4, P = 0.686 and − 0.14 μg·kg− 1·h− 1; 95% CI: − 0.31 to 0.03, P = 0.105). No difference between groups was shown for either intraoperative blood pressure and heart rate, or for postoperative outcomes (i.e., pain scores, morphine consumption, or sedation scores) in the postanesthesia care unit. Conclusions Intraoperative fentanyl administration guided by ANI was equivalent to that guided by a modified pharmacologic pattern. In a surgical model of mastectomy, the ANI-guided intraoperative administration of fentanyl had no impact on clinical outcomes. Trial registration The study was registered with ClinicalTrials.gov (NCT03716453) on 21/10/2018.
Ondansetron 4 mg plus 0.2 mg mL-1 given with PCA morphine can reduce nausea and vomiting thus improving patient satisfaction.
Background Sevoflurane is suitable for low-flow anesthesia (LFA). LFA needs a wash-in phase. The reported sevoflurane wash-in schemes lack simplicity, target coverage, and applicability. We proposed a one-step 1-1-8 wash-in scheme for sevoflurane LFA to be used with both N 2 O and Air. The objective of our study was to identify time for achieving each level of alveolar concentration of sevoflurane (F A S) from 1% to 3.5% in both contexts.Methods We recruited 199 adults requiring general anesthesia with endotracheal intubation and controlled ventilation—102 in group N 2 O and 97 in group Air. After induction and intubation, a wash-in was started using a fresh gas flow of O 2 :N 2 O or O 2 :Air at 1:1 L·min -1 plus sevoflurane 8%. The ventilation was controlled to maintain end-tidal CO 2 of 30-35 mmHg.Results The rising patterns of F A S and inspired concentration of sevoflurane (F I S) are similar, running parallel between the groups. The F A S/F I S ratio increased from 0.46 to 0.72 within 260 sec in group N 2 O and from 0.42 to 0.69 within 286 sec in group Air. The respective time to achieve an F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% was 1, 1.5, 2, 3, 3.5, and 4.5 min in group N 2 O and 1, 1.5, 2, 3, 4, and 5 min in group Air. The heart rate and blood pressure of both groups significantly increased initially then gradually decreased as F A S increased.Conclusions The 1-1-8 wash-in scheme for sevoflurane LFA has many advantages, including simplicity, coverage, swiftness, safety, economy, and that it can be used with both N 2 O and Air. A respective F A S of 1%, 1.5%, 2%, 2.5%, 3%, and 3.5% when used with N 2 O and Air can be expected at 1, 1.5, 2, 3, 3.5, and 4.5 min and 1, 1.5, 2, 3, 4, and 5 min. This scheme may be applied for sevoflurane LFA in situations where an anesthetic gas analyzer is unavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.