Loss of function of PAX5 plays an important role in PAX5 mutation tumor, and PAX5 haploinsufficiency promoting tumorigenesis is related to immune escape. But the mechanisms of PAX5 mutations inducing tumor immune escape have not been clarified. We estimated the proportions of 22 immune cell types and the expressions of immune inhibitory-related molecules based on gene expression profiles (GEPs) from B- acute lymphoblastic leukemia(B-ALL) with PAX5 mutations by CIBERSORT, an established algorithm. We constructed the PAX5 haplodeletion A20 cell lines, built allografted A20 tumor models and evaluated the effect of PAX5 haplodeletion on immune inhibitory-related molecules in the tumor microenvironment (TME). Our results indicated the percentages of T cells in bone marrow of B-ALL with PAX5 mutations were not statistically different from that in bone marrow of B-ALL without PAX5 mutations, except for T follicular helper (Tfh) cells. But a variety of up-regulated immune inhibitory-related molecules in bone marrow of B- ALL with PAX5 mutations were identified. By different approaches, we found that several immune inhibitory-related molecules of CD8+ T cells in TME of PAX5 haplodeletion clones such as TIM3, NR4A1 and BATF, were increased significantly compared with that of PAX5 wild type control. The IFN-ɤ of CD8+ T cells in TME of PAX5 haplodeletion tumors was decreased significantly compared with that of PAX5 wild type control. Our study showed that PAX5 haploinsufficiency induced high expressions of TIM3, NR4A1 and BATF in the TME and was involved in CD8+ T cells dysfunction or exhaustion.
Outcomes for patients with relapsed and refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are dismal, with few available treatments. Recently, identification of cancer patients harboring neurotrophic tropomyosin receptor kinase (NTRK) gene fusions is constantly increasing, especially with the advent of NTRK inhibitors. However, the role of ETV6-NTRK3 in T-ALL has not been investigated. This case represented the first detailed report of T-ALL patient harboring a cryptic ETV6-NTRK3 fusion with an unfavorable prognosis, not only because of leukemia resistant to the standard multiagent chemotherapy but also early relapse after allo-HSCT. Acquired EP300 mutation was found at relapse, which could explain the cause of recurrence and affect the follow-up treatment. Combined targeted therapy like larotrectinib allied with pan-targeted BCL-2 inhibitor venetoclax, may be a potential maintenance treatment in R/R ETV6-NTRK3 positive leukemia after allo-HSCT. The leukemic clonal evolution might be revealed through transcriptome sequencing and overcome by drugs with universal targets. Our case demonstrated that both comprehensive profiling techniques (such as transcriptome sequencing, multiparameter flow cytometry, and digital droplet polymerase chain reaction) and a multimodality treatment strategy were critical for anticipating an early relapse and personalized therapy of R/R T-cell leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.