This study aimed to investigate the teaching effect of the blended BOPPPS based on an online and offline mixed teaching model (“B + BOPPPS”) in the course of fermentation engineering in applied universities. The participants were 142 undergraduates majoring from the course of fermentation engineering in Food Science and Engineering in 2019 and 2020 in Huanghuai University, Zhumadian city, Henan province, China. The students in the control group (68 students) were taught in 2019, and the students in the experimental group (74 students) were taught in 2020. The traditional teaching method and “B + BOPPPS” were implemented, respectively. The teaching effect was evaluated using the questionnaire survey of course satisfaction and theoretical knowledge test. The results showed that the scores of the theoretical knowledge test in the experimental group adopting “B + BOPPPS” were significantly higher than those in the control group, and the difference was statistically significant (p < 0.01). The students had a good evaluation of the “B + BOPPPS” in many aspects, which included achieving learning goals, providing in‐depth understanding of knowledge points, stimulating interest in learning, training in the ability to analyze and think about problems, and so on. The results suggested that “B + BOPPPS” could stimulate students' interest in learning and improve their subjective initiative. They could also improve students' ability to master and apply knowledge, which was conducive to improving the theoretical teaching quality of the course of fermentation engineering.
Following juice crushing for sugar or bioethanol production from sugarcane, bagasse (SCB) is generated as the main lignocellulosic by-product. This study utilized SCB generated by a hydraulic press as feedstock to evaluate sugar extraction as well as adsorption potential. Total soluble sugar (sucrose, glucose, and fructose) of 0.4 g/g SCB was recovered with H2O extraction in this case. Insoluble sugar, that is, cellulose in SCB, was further hydrolyzed into glucose (2%–31%) with cellulase enzyme, generating a new bagasse residue (SCBE). Persulfate pretreatment of SCB slightly enhanced saccharification. Both SCB and SCBE showed great potential as adsorbents with 98% of methylene blue (MB) removed by SCB or SCBE and 75% of Cu2+ by SCBE and 80% by SCB in 60 min. The maximum adsorption amount (qm) was 85.8 mg/g (MB by SCB), 77.5 mg/g (MB by SCBE), 3.4 mg/g (Cu2+ by SCB), and 1.2 mg/g (Cu2+ by SCBE). The thermodynamics indicated that the adsorption process is spontaneous, endothermic, and more random in nature. The experimental results offer an alternative to better reutilize SCB.
Six kinds of Mo-basing nanomaterials (MoO 3 , MoO 3 @Ru, Mo-PDA, MoP C , MoP, CNT@MoS 2 ) were successfully synthesized, which were employed as carriers to immobilize phospholipase A 1 (PLA1) for the hydrolysis of phospholipids (PLs).PLA1 was immobilized by a simple adsorption-precipitation-cross-linking to form an "enzyme net" covering on nanoparticles. The greatest advantage of these nanoparticles was their strong hydrophilic surface. It not only permitted their dispersion in the aqueous phase, but also showed the strong affinity for PLs in the organic phase, because amphiphilic PLs had the polar head group and higher hydrophilicity than other oils components. Michaelis-Menten analysis revealed that higher catalytic activity and enzymeÀsubstrate affinity were observed in several immobilized PLA1 than its free form. MoO 3 was confirmed to be the best candidate for carrier. The highest specific activity of MoO 3 -immobilized PLA1 reached 43.1 U/mg, which was about 1.8 times higher than that of free PLA1 (24.4 U/mg). In addition, the stability and recycling were also enhanced. The robust immobilized PLA1 was prepared in this work, showing great potential for the enzymatic degumming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.