In this paper, a novel birefringent photonic crystal fiber (PCF) with the silver-coated and liquid-filled air-holes along the vertical plane is designed. Simulation results show that the thickness of silver layer, the sizes of holes, and the refractive index of liquid strongly strengthen the gaps between two polarized directions. The surface plasmon resonance peak along y axis can be up to 675.8 dB/cm at 1.33 µm. The proposed PCF has important application in polarization devices, such as filters and beam splitters.
Properties of nonlinear microstructured fiber fabricated in our laboratory are theoretically analyzed using the finite element method. This fiber has a high nonlinearity and phase matching for the dispersion wave generation. To achieve all-fiber nonlinearity in microstructured fiber, the dependence of dispersion wave on the pump power is investigated. When changing the pump power at 1032 nm with a femtosecond fiber laser, the near-infrared dispersion waves cover a region from 753 to 789 nm. The central wavelength and bandwidths alter obviously, and the fiber length has a remarkable impact on pulse broadening and frequency spectrum. Results coincide with the analyses. These results could be a reference for all-fiber nonlinearity of microstructured fiber, and lay a foundation for biological and medical applications, especially some researches on the near-infrared source for nonlinear light microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.