PurposeStudies have found that long noncoding RNA HEIH (lncRNA-HEIH) is upregulated and facilitates hepatocellular carcinoma tumor growth. However, its clinical significances, roles, and action mechanism in colorectal cancer (CRC) remains unidentified.Materials and MethodslncRNA-HEIH expression in CRC tissues and cell lines was measured by quantitative real-time polymerase chain reaction. Cell CountingKit-8, ethynyl deoxyuridine incorporation assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and nude mice xenografts assays were performed to investigate the roles of lncRNA-HEIH. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were performed to investigate the action mechanisms of lncRNA-HEIH.ResultsIn this study, we found that lncRNA-HEIH is significantly increased in CRC tissues and cell lines. lncRNA-HEIH expression is positively associated with tumor size, invasion depth, and poor prognosis of CRC patients. Enhanced expression of lncRNA-HEIH promotes CRC cell proliferation and decreases apoptosis in vitro, and promotes CRC tumor growth in vivo. Whereas knockdown of lncRNA-HEIH inhibits CRC cell proliferation and induces apoptosis in vitro, and suppresses CRC tumor growth in vivo. Mechanistically, lncRNA-HEIH physically binds to miR-939. The interaction between lncRNA-HEIH and miR-939 damages the binding between miR-939 and nuclear factor κB (NF-κB), increases the binding of NF-κB to Bcl-xL promoter, and promotes the transcription and expression of Bcl-xL. Moreover, Bcl-xL expression is positively associatedwith lncRNA-HEIH in CRC tissues. Blocking the interaction between lncRNA-HEIH and miR-939 abolishes the effects of lncRNA-HEIH on CRC tumorigenesis.ConclusionThis study demonstrated that lncRNA-HEIH promotes CRC tumorigenesis through counteracting miR-939‒mediated transcriptional repression of Bcl-xL, and suggested that lncRNA-HEIH may serve as a prognostic biomarker and therapeutic target for CRC.
Colorectal cancer (CRC) is an important cause of morbidity and mortality worldwide, and is difficult to detect in its early stages. Diagnostic and prognostic biomarkers are required, which may also be the basis for improving the targeted therapy for CRC. Sirtuin 6 (SIRT6) is a member of the sirtuin family of gene regulators, which have specific functions in genomic stability, gene transcription and energy metabolism in tumorigenesis. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a metabolic enzyme which can be deacetylated by sirtuins. In this study, tissue samples from 29 patients with histologically confirmed CRC of varying grade and stage were studied for SIRT6 and NMNAT2 expression by western blotting and reverse transcription-quantitative polymerase chain reaction. Immunohistochemistry was performed for SIRT6 and NMNAT2 expression in 113 paired (CRC and adjacent) tissue sections. SIRT6 protein and mRNA expression levels were significantly reduced in CRC tissues; NMNAT2 protein and mRNA expression levels were significantly increased in CRC tissues (P<0.01). A negative correlation between the expression of SIRT6 and NMNAT2 in CRC tissue samples was identified (r=−0.246, P<0.01). The reduced expression of SIRT6 and increased expression of NMNAT2 were associated with the tumor depth invasion, stage, differentiation grade (SIRT6 only) and the presence of lymph node metastasis (P<0.05). In conclusion, the findings of the present preliminary study demonstrated that the increased expression of NMNAT2 and reduced expression of SIRT6 may be associated with the progression of CRC. The downregulation of SIRT6 may promote the expression of NMNAT2. Further studies are indicated on the role of NMNAT2 and SIRT6 as potential diagnostic and prognostic biomarkers and as targets for therapy in CRC and other malignant tumors.
Abstract. Metastasis is the primary cause of mortality in colorectal cancer (CRC), the mechanism of which remains unclear. In the present study, by detecting mRNA expression using a reverse transcription-quantitative polymerase chain reaction (qPCR), it was revealed that sterol regulatory element-binding protein 1 (SREBP1) is highly expressed in CRC. Using a cell wound healing assay and a cell invasion assay, a novel metastasis-promoting role for SREBP1 in CRC was identified. Furthermore, snail family transcriptional repressor 1 (SNAIL) was identified as a key downstream effector of SREBP1 in CRC by the use of small interfering RNA against SNAIL. Additionally, using co-immunoprecipitation and chromatin immunoprecipitation-qPCR assays, it was demonstrated that SREBP1 interacts with c-MYC to enhance the binding of c-MYC to the promoter of the mesenchymal gene, SNAIL, thereby increasing SNAIL expression and accelerating epithelial-mesenchymal transition. These results indicated a novel role for SREBP1 and provide insight into the regulatory mechanisms of the c-Myc oncogene in CRC, which may function as a potential therapeutic target for CRC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.