Background & Aims: Molecular dating methods have been applied widely in recent years and provide an indispensable and detailed evolutionary timescale for macroevolutionary researches, particularly for studies on the evolutionary history of biodiversity patterns. Bayesian methods and Markov chain Monte Carlo methods can accommodate multi-dimensional and various type of data and parameter settings, which have helped the node-dating methods implemented in softwares such as BEAST, PAML-MCMCTree to become the most widely used molecular dating methods. One of the advantages of Bayesian frameworks is that they can employ complex models to consider a variety of uncertainty factors to make more accurate estimations of evolutionary divergence times. Progress: We review the principles and main types of Bayesian molecular dating methods and use Bayesian node-dating methods as an example to discuss potential errors in molecular clock models, selection and placement of fossil calibrating points, frequency of sampling, and setting a prior distribution for node calibrations based on fossils. We further describe advantages associated with different Bayesian time tree reconstruction software packages, the discussing principle of node age, and the comparison method of time tree under different models. We also provide suggestions for overcoming the challenges of overestimation and underestimation bias of node ages. Integration of the
No abstract
Background Temporal filling is commonly used to correct temporal depression. However, there is a lack of quantitative criteria for pre- and post-operative evaluations. The use of three-dimensional scanning may help improving the success of temporal filling by providing quantitative assessments. The study aimed to compare the results of qualitative morphological evaluation of the temporal region with a quantitative, numerical analysis of the temporal difference value (TDV). Methods We enrolled twenty-six male and forty-nine female volunteers aged 18 to 29 years. Facial images were acquired in OBJ format using 3dMD facial stereo-photography. The morphologies of the temporal regions were separately evaluated by four researchers in the form of two-dimensional (2D) images. Results were classified as either aesthetic or unaesthetic. The quantitative evaluation of the temporal region was then conducted. First, the temporal region was trimmed out from the original 3D image into a new OBJ file. Second, interpolation was used to construct a smooth, adapted surface. Third, a mathematical model of temporal region flatness denoted as the TDV, which was defined as the sum of the Euclidean distances of all 3D points between the constructed surface and the temporal-region OBJ file. The classification of each sample was compared with its TDV to verify the mathematical model’s validity. The cutoff threshold and prediction accuracy of this mathematical model were calculated. Results The cutoff threshold between aesthetic and unaesthetic TDV was found to be 24.66 for males and 28.11 for females. The prediction accuracy rate was 0.73 for men and 0.73 for women. Conclusion The method has high overlap and good repeatability and minimizes the influence of subjective aesthetics on morphological judgment. TDV has a certain reference value for clinical temporal region evaluation.
The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/ electrostatic precipitator (ESP) locations in coal-fired power stations in China, and then various mercury speciation, Hg 0 , Hg 2+ and Hg P in flue gas, were analyzed by using EPA method. The solid sample, such as coal, bottom ash and ESP ash, were analyzed by DMA 80, based on EPA Method 7473. According to mercury balance, mercury speciation and its distribution in different locations downstream the flue gas were obtained. The mercury removal efficiency of coal-fired power plants installed FF is more than 20% and 80% respectively. While the mercury removal efficiency of coal-fired power plants installed ESP is around 7%, 20% and 4% respectively. The concentrations of chlorine and sulfur in coal, NO x , SO 2 , HCl and Cl 2 in flue gas have positive correlation with formation of the oxidized mercury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.