Purpose As often in project scheduling, when the project duration is shortened to reduce total cost, the total float is lost resulting in more critical or nearly critical activities. This, in turn, results in reducing the probability of completing the project on time and increases the risk of schedule delays. The objective of project management is to complete the scope of work on time, within budget in a safe fashion of risk to maximize overall project success. The purpose of this paper is to present an effective algorithm, named as adaptive multiple objective differential evolution (DE) for project scheduling with time, cost and risk trade-off (AMODE-TCR). Design/methodology/approach In this paper, a multi-objective optimization model for project scheduling is developed using DE algorithm. The AMODE modifies a population-based search procedure by using adaptive mutation strategy to prevent the optimization process from becoming a purely random or a purely greedy search. An elite archiving scheme is adopted to store elite solutions and by aptly using members of the archive to direct further search. Findings A numerical construction project case study demonstrates the ability of AMODE in generating non-dominated solutions to assist project managers to select an appropriate plan to optimize TCR problem, which is an operation that is typically difficult and time-consuming. Comparisons between the AMODE and currently widely used multiple objective algorithms verify the efficiency and effectiveness of the developed algorithm. The proposed model is expected to help project managers and decision makers in successfully completing the project on time and reduced risk by utilizing the available information and resources. Originality/value The paper presented a novel model that has three main contributions: First, this paper presents an effective and efficient adaptive multiple objective algorithms named as AMODE for producing optimized schedules considering time, cost and risk simultaneously. Second, the study introduces the effect of total float loss and resource control in order to enhance the schedule flexibility and reduce the risk of project delays. Third, the proposed model is capable of operating automatically without any human intervention.
PurposeProject managers work to ensure successful project completion within the shortest period and at the lowest cost. One of the main tasks of a project manager in the planning phase is to generate the project time–cost curve, and furthermore, to determine the most appropriate schedule for the construction process. Numerous existing time–cost tradeoff analysis models have focused on solving a simple project representation without regarding for typical activity and project characteristics. This study aims to present a novel approach called “multiple-objective social group optimization” (MOSGO) for optimizing time–cost decisions in generalized construction projects.Design/methodology/approachIn this paper, a novel MOGSO to mimic the time–cost tradeoff problem in generalized construction projects is proposed. The MOSGO has slightly modified the mechanism operation from the original algorithm to be a free-parameter algorithm and to enhance the exploring and exploiting balance in an optimization algorithm. The evidential reasoning technique is used to rank the global optimal obtained non-dominated solutions to help decision makers reach a single compromise solution.FindingsTwo case studies of real construction projects were investigated and the performance of MOSGO was compared to those of widely considered multiple-objective evolutionary algorithms. The comparison results indicated that the MOSGO approach is a powerful, efficient and effective tool in finding the time–cost curve. In addition, the multi-criteria decision-making approaches were applied to identify the best schedule for project implementation.Research limitations/implicationsAccordingly, the first major practical contribution of the present research is that it provides a tool for handling real-world construction projects by considering all types of construction project. The second important implication of this study derives from research finding on the hybridization multiple-objective and multi-criteria techniques to help project managers in facilitating the time–cost tradeoff (TCT) problems easily. The third implication stems from the wide-range application of the proposed model TCT.Practical implicationsThe model can be used in early stages of the construction process to help project managers in selecting an appropriate plan for whole project lifecycle.Social implicationsThe proposal model can be applied to multi-objective contexts in diversified fields. Moreover, the model is also a useful reference for future research.Originality/valueThis paper makes contributions to extant literature by: introducing a method for making TCT models applicable to actual projects by considering general activity precedence relations; developing a novel MOSGO algorithm to solving TCT problems in multi-objective context by a single simulation; and facilitating the TCT problems to project managers by using multi-criteria decision-making approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.