A recent focus of computational biology has been to integrate the complementary information available in molecular profiles as well as in multiple network databases in order to identify connected regions that show significant changes under different conditions. This allows for capturing dynamic and condition-specific mechanisms of the underlying phenomena and disease stages. Here we review 22 such integrative approaches for active module identification published over the last decade. This article only focuses on tools that are currently available for use and are well-maintained. We compare these methods focusing on their primary features, integrative abilities, network structures, mathematical models, and implementations. We also provide real-world scenarios in which these methods have been successfully applied, as well as highlight outstanding challenges in the field that remain to be addressed. The main objective of this review is to help potential users and researchers to choose the best method that is suitable for their data and analysis purpose.
Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.
In molecular biology and genetics, there is a large gap between the ease of data collection and our ability to extract knowledge from these data. Contributing to this gap is the fact that living organisms are complex systems whose emerging phenotypes are the results of multiple complex interactions taking place on various pathways. This demands powerful yet user-friendly pathway analysis tools to translate the now abundant high-throughput data into a better understanding of the underlying biological phenomena. Here we introduce Consensus Pathway Analysis (CPA), a web-based platform that allows researchers to (i) perform pathway analysis using eight established methods (GSEA, GSA, FGSEA, PADOG, Impact Analysis, ORA/Webgestalt, KS-test, Wilcox-test), (ii) perform meta-analysis of multiple datasets, (iii) combine methods and datasets to accurately identify the impacted pathways underlying the studied condition and (iv) interactively explore impacted pathways, and browse relationships between pathways and genes. The platform supports three types of input: (i) a list of differentially expressed genes, (ii) genes and fold changes and (iii) an expression matrix. It also allows users to import data from NCBI GEO. The CPA platform currently supports the analysis of multiple organisms using KEGG and Gene Ontology, and it is freely available at http://cpa.tinnguyen-lab.com.
Cancer is an umbrella term that includes a range of disorders, from those that are fast-growing and lethal to indolent lesions with low or delayed potential for progression to death. One critical unmet challenge is that molecular disease subtypes characterized by relevant clinical differences, such as survival, are difficult to differentiate. With the advancement of multi-omics technologies, subtyping methods have shifted toward data integration in order to differentiate among subtypes from a holistic perspective that takes into consideration phenomena at multiple levels. However, these integrative methods are still limited by their statistical assumption and their sensitivity to noise. In addition, they are unable to predict the risk scores of patients using multi-omics data. Here, we present a novel approach named Subtyping via Consensus Factor Analysis (SCFA) that can efficiently remove noisy signals from consistent molecular patterns in order to reliably identify cancer subtypes and accurately predict risk scores of patients. In an extensive analysis of 7,973 samples related to 30 cancers that are available at The Cancer Genome Atlas (TCGA), we demonstrate that SCFA outperforms state-of-the-art approaches in discovering novel subtypes with significantly different survival profiles. We also demonstrate that SCFA is able to predict risk scores that are highly correlated with true patient survival and vital status. More importantly, the accuracy of subtype discovery and risk prediction improves when more data types are integrated into the analysis. The SCFA software and TCGA data packages will be available on Bioconductor.
Cancer targeted therapies have attracted considerable attention over the past year. Recently, 5-fluouracil (5-FU), which has high toxicity to normal cells and short half-life associated with rapid metabolism, is one of the most commonly used therapies in the treatment of cancer. In this study the folic acid-conjugated pegylated nanoliposomes were synthesized and then loaded into them with 5-FU to improve the anti-tumor efficacy. The average size of liposomes (LPs) was about 52.7 nm which was identified by TEM. In the liposome uptake studies, the level uptake of folate-conjugated liposomes has increased compared to non-conjugated LPs according to LPs concentration, incubation time and presence of concentration of free folic acid (FA). The MTT assay and apoptotic test were carried out in HCT116 and MCF-7 cells for 24 or 48 h. The results revealed that the folate-PEG modified 5-Fu loaded nanoliposomes had strong cytotoxicity to cancer cell compared to pure 5-FU or PEG modified 5-FU loaded liposomes in a concentration- and time-dependent manner, and mainly enhanced the cancer cell death through folate-mediated endocytosis. Hence, the folate-PEG modified nanoliposome is a potential targeted drug-delivery system for the treatment of FR-positive cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.