The design of structural components in low-cycle fatigue field often requires the knowledge of the cyclic properties of the material, which are commonly described by the classical relation of Ramberg-Osgood. In order to obtain the cyclic curve using experimental data from incremental step tests, four methodologies are described and critically discussed. Three methods differ in the procedure of evaluation of the elastic modulus, while in the last one the experimental data are interpolated with a single non-linear regression. The various techniques were applied to data obtained from tests carried out on stainless steel specimens, and the resulting differences were analysed and quantified. An average behaviour was evaluated considering the total set of data obtained from experimental tests. The choice of the most suitable method is related to both the strain range of interest and the goal for which the results are used.
Experimental indentations are carried out on items of two different materials, taken in several location of various components from high pressure gas turbine rotor which have seen an extensive service. The components object of investigation consisted in 1 st and 2 nd high pressure turbine wheels made in nickel-base superalloy (Inconel 718), the spacer ring (Inconel 718) and the compressor shaft made in CrMoV low alloy steel (ASTM A471 type10). Aim of the work is to set up the capability of the instrumented spherical indentation testing system to evaluate variations in the material properties due to damage, resulting from temperature field and stresses acting on components during service. To perform this task load-indentation depth curves will be acquired in various zones of the above mentioned components. The analysis of the results has allowed to identify an energy parameter which shows a linear evolution with the mean temperature acting on the components.
No abstract
An artificial neural network-based algorithm, which adequately captures the complexity of the temper embrittlement phenomenon in NiCrMoV steels has been developed in order to predict the FATT50% value of material as a function of the chemical composition and serviced time. The model, validated using published data, relies for its training on a very large experimental data set of serviced rotors, aged up to 88,000 hours, and it captures the interactions between input parameters using complex non-linear functions. The results agree with considerations reported in literature and provide analytical relations between evolution of the FATT50% value at various ageing time for a specific alloy compositions, as well as the influence of the main elements in the alloy composition.
This paper describes the design of the Free Power Turbine (FPT) of the LM9000, in particularly the design of its Passive Clearance Control (PCC) system. The LM9000 is the aero-derivative version of the GE90-115B jet engine. Its core engine has many common parts with the GE90; what differs is the booster (low pressure compressor) and the lower pressure turbine (LPT). The booster of the LM9000 is without fan because the engine is not used to provide thrust but torque only, subsequently it has a new flow path [5]. The LPT has instead been replaced by an intermediate pressure turbine (IPT) and by the FPT. The IPT drives the booster, while the FPT is a free low-pressure turbine designed for both power generation and mechanical drive industrial applications, including LNG production plants. Due to its different application, the LM9000 FPT flow path differs sensibly from the GE90 LPT, however as the GE90 it is provided of a clearance control system that cools the casing in order to reduce its radial deflection. It is not the first time that a clearance control system has been used in industrial applications; in GE aero-derivative power turbines is already present in the LM6000 and LMS100. Design constraints, system complexity, high environment variability because the PCC is located outside the GT, harsh environments and long periods of usage still make the design of this component challenging. The design of the PCC has been supported by extensive heat transfer and mechanical simulations. Each PCC component has been addressed with a dedicated life calculation and all the blade and seal clearances have been estimated for all the operating conditions of the engine. Simulations have been validated by an extensive test campaign performed on the first engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.