a Efficient polymer-protein conjugation is a crucial step in the design of many therapeutic protein formulations including nanoscopic vaccine formulations, antibody-drug conjugates and to enhance the in vivo behaviour of proteins. Here we aimed at preparing well-defined polymers for conjugation to proteins by reversible addition-fragmentation chain transfer (RAFT) polymerization of both acrylates and methacrylamides with protein-reactive chain transfer agents (CTAs). These RAFT agents contain either a N-hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) ester moiety that can be conjugated to lysine residues, and alternatively a maleimide (MAL) or pyridyl disulfide (PDS) moiety that can be conjugated to cysteine residues. Efficiency of the bioconjugation of these polymers to bovine and avian serum albumin was investigated as a function of stoichiometry, polymer molecular weight and the presence of reducing agents. A large molar excess of polymer was required to obtain an acceptable degree of protein conjugation.However, protein modification with N-succinimidyl-S-acetylthiopropionate (SATP) to introduce sulfhydryl groups onto primary amines, significantly increased conjugation efficiency with MAL-and PDS-containing polymers.
A recently developed (4+3) cycloaddition between dienes and furfuryl alcohols, as precursors of oxyallyl-type cations, has been used as a key step in the racemic syntheses of two natural products: frondosin B and liphagal. This work demonstrates the synthetic potential of this cycloaddition reaction, and offers a short synthetic route to an interesting family of natural products. A full account of these synthetic studies is presented, further illustrating the mechanism, scope, and limitations of this straightforward synthetic method for seven-membered rings.
We report on transiently responsive protein-polymer conjugates that temporarily change their protein conformation from the soluble to the particle-like state. 'Grafting-from' RAFT polymerization of a dioxolane-containing acrylamide with a protein macroCTA is used to design polymer-protein conjugates that self-assemble into nanoparticles at physiological temperature and pH. Acid triggered hydrolysis of the dioxolane units into diol moeities rendered the conjugates fully water soluble irrespective of temperature.
By using a gallium(III) triflate catalyzed intramolecular (4+3) cycloaddition, a few functionalized furan‐derived tricycles that share the common guaianolide sesquiterpene ring system were prepared in a stereoselective manner in only three steps from commercially available starting materials. A discussion of the formation of alternative products is included, with possible substrate requirements to achieve the key cycloaddition step in an efficient way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.