Fifth Generation (5G) fosters the integration of several technologies for achieving the requirements of rapid and reliable communications. Multiple Input Multiple Output (MIMO) is one such technology implemented in communication systems with the aim of delivering better services to users. Machine Learning (ML) technologies are also being used alongside MIMO since they can aid with the selection of the most appropriate MIMO configuration based on antenna, data, and channel parameters. These parameters can be further used as input features to the models for obtaining the best data rate and throughput. In this paper, three different MIMO configurations, 2 × 2, 3 × 3, and 4 × 4 MIMO using directional and omnidirectional antennas have been simulated. Power propagation from each antenna, MIMO power, channel capacity, data rate, and throughput have been used as response variables. The data obtained from these simulations are used to train regression models for prediction of new data. Frankfurt city is used as scenario in this simulation and the models are analyzed based on the root mean squared error (RMSE) values obtained. The results demonstrate that the interactions linear regression, fine tree and medium tree models provide the lowest RMSE values when predicting the variables for different MIMO configurations using directional and omnidirectional antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.