Some switching properties of multivariate control charts are investigated when the interval between two consecutive sample selections is not fixed but changes according to the result of the previous sample observation. Many articles showed that the performances of variable sampling interval control charts are more efficient than those of fixed sampling interval control charts in terms of average run length (ARL) and average time to signal (ATS). Unfortunately, the ARL and the ATS do not provide any information on how frequent a switch is being made. We evaluate several switching properties of two sampling interval Shewhart and CUSUM procedures for controlling mean vector of correlated quality variables.
Multivariate control charts for effectively monitoring every component in the dispersion matrix of multivariate normal process are considered. Through the numerical results, we noticed that the multivariate control charts based on sample statistic Vi by Hotelling or Wi by Alt do not work effectively when the correlation coefficient components in dispersion matrix are increased. We propose a combined procedure monitoring every component of dispersion matrix, which operates simultaneously both control charts, a chart controlling variance components and a chart controlling correlation coefficients. Our numerical results show that the proposed combined procedure is efficient for detecting changes in both variances and correlation coefficients of dispersion matrix.
Because of the equivalence between control chart procedures and hypothesis testing, we propose to use likelihood ratio test (LRT) statistic as the multivariate control statistic for simultaneous monitoring means of the multivariate normal process. Properties and comparisons of the proposed control charts are explored and conducted for matched fixed sampling interval (FSI) and variable sampling interval (VSI) with two sampling interval charts. The result of numerical comparisons shows that EWMA chart with two sampling interval procedure is more efficient than the corresponding FSI chart for small or moderate changes. When large shift of the process has occurred, we also found that Shewhart chart is more efficient than EWMA chart.
There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.