In both the United States and the Netherlands, SSRI prescriptions for children and adolescents decreased after U.S. and European regulatory agencies issued warnings about a possible suicide risk with antidepressant use in pediatric patients, and these decreases were associated with increases in suicide rates in children and adolescents.
A plausible factorial structure for many types of psychological and educational tests exhibits a general factor and one or more group or method factors. This structure can be represented by a bifactor model. The bifactor structure results from the constraint that each item has a nonzero loading on the primary dimension and, at most, one of the group factors. The authors develop estimation procedures for fitting the graded response model when the data follow the bifactor structure. Using maximum marginal likelihood estimation of item parameters, the bifactor restriction leads to a major simplification of the likelihood equations and (a) permits analysis of models with large numbers of group factors, (b) permits conditional dependence within identified subsets of items, and (c) provides more parsimonious factor solutions than an unrestricted full-information item factor analysis in some cases. Analysis of data obtained from 586 chronically mentally ill patients revealed a clear bifactor structure.
We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease.
The aggregate nature of these observational data preclude a direct causal interpretation of the results. A high number of TCA prescriptions may be a marker for those counties with more limited access to quality mental health care and inadequate treatment and detection of depression, which in turn lead to increased suicide rates. By contrast, increases in prescriptions for SSRIs and other new-generation non-SSRIs are associated with lower suicide rates both between and within counties over time and may reflect antidepressant efficacy, compliance, a better quality of mental health care, and low toxicity in the event of a suicide attempt by overdose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.