The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein structures comprised of transmembrane proteins, which interact with the actin cytoskeleton via plaque proteins. Signaling pathways involved in the assembly, disassembly, and maintenance of TJ are controlled by a number of signaling molecules, such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase, and Rho GTPases. The intestinal barrier is a complex environment exposed to many dietary components and many commensal bacteria. Studies have shown that the intestinal bacteria target various intracellular pathways, change the expression and distribution of TJ proteins, and thereby regulate intestinal barrier function. The presence of some commensal and probiotic strains leads to an increase in TJ proteins at the cell boundaries and in some cases prevents or reverses the adverse effects of pathogens. Various dietary components are also known to regulate epithelial permeability by modifying expression and localization of TJ proteins.
Summary Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co‐culture in viable form with oxygen‐requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co‐culture of live obligate anaerobes with the human intestinal cell line Caco‐2, was developed. Caco‐2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco‐2 cells had adapted to survive in an oxygen‐reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)‐killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco‐2 cells exposed to live F. prausnitzii than UV‐killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti‐inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co‐culture system that allows obligate anaerobic bacteria to remain viable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.