BackgroundRecent data have shown that HTLV-1 is prevalent among HIV positive patients in Mozambique, although the impact of HTLV-1 infection on HIV disease progression remains controversial. Our aim was to determine the phenotypic profile of T lymphocytes subsets among Mozambican patients co-infected by HIV and HTLV-1.MethodsWe enrolled 29 patients co-infected by HTLV-1 and HIV (co-infected), 59 patients mono-infected by HIV (HIV) and 16 healthy controls (HC), respectively.For phenotypic analysis, cells were stained with the following fluorochrome-labeled anti-human monoclonal antibodies CD4-APC, CD8-PerCP, CD25-PE, CD62L-FITC, CD45RA-FITC. CD45RO-PE, CD38-PE; being analysed by four-colour flow cytometry.ResultsWe initially found that CD4+ T cell counts were significantly higher in co-infected, as compared to HIV groups. Moreover, CD4+ T Lymphocytes from co-infected patients presented significantly higher levels of CD45RO and CD25, but lower levels of CD45RA and CD62L, strongly indicating that CD4+ T cells are more activated under HTLV-1 plus HIV co-infection.ConclusionOur data indicate that HTLV-1/HIV co-infected patients progress with higher CD4+ T cell counts and higher levels of activation markers. In this context, it is conceivable that in co-infected individuals, these higher levels of activation may account for a faster progression to AIDS.
Seven hundred and four HIV-1/2-positive, antiretroviral therapy (ART) naïve patients were screened for HTLV-1 infection. Antibodies to HTLV-1 were found in 32/704 (4.5%) of the patients. Each co-infected individual was matched with two HIV mono-infected patients according to World Health Organization clinical stage, age ±5 years and gender. Key clinical and laboratory characteristics were compared between the two groups. Mono-infected and co-infected patients displayed similar clinical characteristics. However, co-infected patients had higher absolute CD4+ T-cell counts (P = 0.001), higher percentage CD4+ T-cell counts (P < 0.001) and higher CD4/CD8 ratios (P < 0.001). Although HIV plasma RNA viral loads were inversely correlated with CD4+ T-cell-counts in mono-infected patients (P < 0.0001), a correlation was not found in co-infected individuals (P = 0.11). Patients with untreated HIV and HTLV-1 co-infection show a dissociation between immunological and HIV virological markers. Current recommendations for initiating ART and chemoprophylaxis against opportunistic infections in resource-poor settings rely on more readily available CD4+ T-cell counts without viral load parameters. These guidelines are not appropriate for co-infected individuals in whom high CD4+ T-cell counts persist despite high HIV viral load states. Thus, for co-infected patients, even in resource-poor settings, HIV viral loads are likely to contribute information crucial for the appropriate timing of ART introduction.
Residual viral replication in children receiving stavudine/zidovudine + lamivudine + nevirapine treatment is associated with a time-dependent risk of acquiring cross-resistance, including resistance to drugs currently used for second-line treatment and also to the new generation of non nucleoside reverse transcriptase inhibitors.
Quantitative plasma viral load (VL) at 1000 copies /mL was recommended as the threshold to confirm antiretroviral therapy (ART) failure by the World Health Organization (WHO). Because of ongoing challenges of using plasma for VL testing in resource-limited settings (RLS), especially for children, this study collected 717 DBS and paired plasma samples from children receiving ART ≥1 year in Mozambique and compared the performance of DBS using Abbott’s VL test with a paired plasma sample using Roche’s VL test. At a cut-off of 1000 copies/mL, sensitivity of DBS using Abbott DBS VL test was 79.9%, better than 71.0% and 63.9% at 3000 and 5000 copies/mL, respectively. Specificities were 97.6%, 98.8%, 99.3% at 1000, 3000, and 5000 copies/mL, respectively. The Kappa value at 1000 copies/mL, 0.80 (95% CI: 0.73, 0.87), was higher than 0.73 (95% CI: 0.66, 0.80) and 0.66 (95% CI: 0.59, 0.73) at 3000, 5000 copies/mL, respectively, also indicating better agreement. The mean difference between the DBS and plasma VL tests with 95% limits of agreement by Bland-Altman was 0.311 (-0.908, 1.530). Among 73 children with plasma VL between 1000 to 5000 copies/mL, the DBS results were undetectable in 53 at the 1000 copies/mL threshold. While one DBS sample in the Abbott DBS VL test may be an alternative method to confirm ART failure at 1000 copies/mL threshold when a plasma sample is not an option for treatment monitoring, because of sensitivity concerns between 1,000 and 5,000 copies/ml, two DBS samples may be preferred accompanied by careful patient monitoring and repeat testing.
Between 2007 and 2008, the Mozambique Ministry of Health conducted an assessment of human immunodeficiency virus drug resistance (HIVDR) using World Health Organization (WHO) methods in a cohort of children initiating antiretroviral therapy (ART) at the main pediatric ART referral center in Mozambique. It was shown that prior to ART initiation 5.4% of children had HIVDR that was associated with nevirapine perinatal exposure (P < .001). Twelve months after ART initiation, 77% had viral load suppression (<1000 copies/mL), exceeding the WHO target of ≥ 70%; 10.3% had HIVDR at 12 months. Baseline HIVDR (P = .04), maternal prevention of mother-to-child transmission (P = .02), and estimated days of missed medication (P = .03) predicted HIVDR at 12 months. As efforts to eliminate pediatric AIDS are intensified, implementation of ritonavir-boosted protease inhibitor regimens in children with prevention of mother-to-child transmission exposure may reduce risk of virological failure in our setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.