In today’s cyber physical systems, adaptability concepts can be used to fulfill fail-operational requirements while enabling optimized resource utilization. However, the applicability of such concepts highly depends on the support for the engineering during system development. We propose an approach to cope with the challenges of fail-operational behavior of CPS in which engineers are supported by design concepts for realizing safety, reliability, and adaptability requirements through the use of architectural patterns. The approach allows expressing concepts for fail-operational behavior at the software architecture level. By our approach, the effort for developing adaptive CPS can be kept low by utilizing fail-operational architectural patterns for general and reoccurring safety-relevant mechanisms. This is demonstrated by an application to an automotive case system
To deal with fail-operational (FO) requirements in today's safety-critical networked embedded systems (SCNES), engineers have to resort to concepts such as redundancy, monitoring, and special shutdown procedures. Hardware-based redundancy approaches are not applicable to many embedded systems domains (e.g., automotive systems), because of prohibitive costs. In this scenario, adaptability concepts can be used to fulfill these FO requirements while enabling optimized resource utilization. However, the applicability of such concepts highly depends on the support for the engineering during system development. We propose an approach to cope with the challenges of fail-operational behavior of SCNES in which engineers are supported by design concepts for realizing safety, reliability, and adaptability requirements through the use of architectural patterns. The approach allows expressing FO concepts at the software architecture level. This lowers the effort for developing SCNES by utilizing generic patterns for general and reoccurring mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.