Reactions associated with removal of oxygen from oxygenates (deoxygenation) are an important aspect of hydrocarbon fuels production process from biorenewable substrates. Here we report the equilibrium composition of methanol-to-hydrocarbon system by minimizing the total Gibbs energy of the system using Cantera methodology. The system was treated as a mixture of 14 components which had CH3OH, C6H6, C7H8, C8H10 (ethyl benzene), C8H10 (xylenes), C2H4, C2H6, C3H6, CH4, H2O, C, CO2, CO, H2. The carbon in the equilibrium mixture was used as a measure of coke formation which causes deactivation of catalysts that are used in aromatization reaction(s). Equilibrium compositions of each species were analyzed for temperatures ranging from 300 to 1380 K and pressure at 0–15 atm gauge. It was observed that when the temperature increases the mole fractions of benzene, toluene, ethylbenzene, and xylene pass through a maximum around 1020 K. At 300 K the most abundant species in the system were CH4, CO2, and H2O with mole fractions 50%, 16.67%, and 33.33%, respectively. Similarly at high temperature (1380 K), the most abundant species in the system were H2 and CO with mole fractions 64.5% and 32.6% respectively. The pressure in the system shows a significant impact on the composition of species.
An electrochemical biosensor for glycerol was obtained by using a novel concatenation of molecules to immobilize glycerol dehydrogenase (GlDH) on a gold electrode via layer-by-layer (LBL) self-assembly. The surface of the enzyme electrodes was characterized by cyclic voltammetry and scanning electron microscopy which confirmed the attachment of enzyme on the gold electrode with the assistance of the tethering molecules. The biosensor was assessed for its potentiometric and amperometric response to glycerol in the presence of the enzyme stimulants, ammonium sulfate and manganese chloride. The electrodes demonstrated good selectivity and reproducibility, with a amperometric response at a working voltage of 1.3 V in the 0.001 to 1 M glycerol concentration range, a 12.07 μA·M −1 sensitivity, and a 6.8 μM lower limit of detection. The average diffusion coefficient of glycerol is 8.63×10 −6 cm 2 s −1 as determined by chronoamperometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.