Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.
Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.
The role of cell-surface proteoglycans in human immunodeficiency virus (HIV) infection of T-cell lines was investigated. HIV-1-susceptible lymphoblastic T-cell lines, MT-4 and H9, were analyzed for proteoglycan synthesis and found to make heparan sulfate (HS) and chondroitin sulfate proteoglycans. Enzymatic treatment of these cells with heparitinase, but not chondroitinase, significantly prevented HIV-1(IIIB) infection as measured by inhibition of cytopathicity, reverse transcriptase production, and syncytia formation. Sulfation of glycosaminoglycans HS chains was critical to viral entry as shown by inhibition of viral infection with sodium chlorate and its specific reversal with exogenous sulfate addition. Quantitation of direct virus binding to cells showed that treatment of cells with heparitinase inhibited HIV-1 binding to the T-cell surface. Exogenous HS added to cultures inhibited virus infection in a manner analogous to dextran sulfate, further supporting a functional role for HS in HIV-1 binding. These results provide evidence for participation of cell-surface HS proteoglycans in HIV-cell attachment and virus entry.
In this study, we show the leishmanicidal effects of a chloroform fraction (CLF) and a purified indole alkaloid obtained from crude stem extract of Peschiera australis against Leishmania amazonensis, a causative agent of cutaneous leishmaniasis in the New World. In a bioassay-guided chemical fractionation, the leishmanicidal activity in CLF completely and irreversibly inhibited promastigote growth. This fraction was also active against amastigotes in infected murine macrophages. Chemical analysis of CLF identified an iboga-type indole alkaloid coronaridine as one of its major compounds. Coronaridine showed potent antileishmanial activity, inhibiting promastigote and amastigote growth. Promastigotes and amastigotes treated with CLF or coronaridine showed pronounced alterations in their mitochondria as assessed by transmission electron microscopy.
The mechanism of heparan sulfate (HS)-mediated human immunodeficiency virus type 1 (HIV-1) binding to and infection of T cells was investigated with a clone (H9h) of the T-cell line H9 selected on the basis of its high level of cell surface CD4 expression. Semiquantitative PCR analysis revealed that enzymatic removal of cell surface HS by heparitinase resulted in a reduction of the amount of HIV-1 DNA present in H9h cells 4 h after exposure to virus. Assays of the binding of recombinant envelope proteins to H9h cells demonstrated a structural requirement for an oligomeric form of gp120/gp41 for HS-dependent binding to the cell surface. The ability of the HIV-1 envelope to bind simultaneously to HS and CD4 was shown by immunoprecipitation of HS with either antienvelope or anti-CD4 antibodies from 35 SO 4 2؊-labeled H9h cells that had been incubated with soluble gp140. Soluble HS blocked the binding of monoclonal antibodies that recognize the V3 and C4 domains of the envelope protein to the surface of H9 cells chronically infected with HIV-1 IIIB. The V3 domain was shown to be the major site of envelope-HS interaction by examining the effects of both antienvelope monoclonal antibodies and heparitinase on the binding of soluble gp140 to H9h cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.