Spatial source phase (SSP), derived from complex-valued functional magnetic resonance imaging (fMRI) data by datadriven methods, has unique capacity of identifying blood oxygenation-level dependent (BOLD)-related voxels from noisy voxels regardless of their amplitudes. However, the use of SSP constraint in sparse representation algorithms have rarely been studied. This study proposes a sparse representation method using SSP hard thresholding to achieve the sparsity of spatial components, enabling the use of initially complex-valued fMRI data and retaining the brain information embedded in noisy voxels and weak BOLDrelated voxels with small phase values. Rank-1 matrix estimation is applied to sequentially update dictionary atoms and corresponding spatial components, followed by hard thresholding on spatial components based on SSP. The proposed method is evaluated using both simulated and experimental complex-valued data. The results show that the proposed method yields better performance than a complexvalued dictionary learning algorithm when using initially acquired complex-valued task-related fMRI data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.