Sixteen crystal structures have been determined for the Co3(dpa)(4)Cl2 (1) molecule in the following five crystalline solvates: 1.0.85(C2H5)(2)O.0.15CH2Cl2 (at 120, 213, 296 K); 1.C(4)H(8)O (at 120, 295 K); 1.C(6)H(6) (at 170, 213, 260, 316 K); 1.C(6)H(12) (at 120, 213, 295 K); and 1.1.75C(7)H(8).0.5C(6)H(14) (at 90, 110, 170, 298 K). For 1.0.85(C(2)H(5))(2)O.0.15CH2Cl2 the molecule of 1 is almost symmetrical at 120 K (Co-Co distances of 2.3191(3) and 2.3304(3) A) and remains so at 296 K (2.2320(3) and 2.3667(4) A). For 1.C(4)H(8)O the Co(3) chain is precisely symmetric at both 120 and 295 K though the Co-Co distances increase from 2.3111(4) to 2.3484(4) A as the temperature rises. Compound 1.C(6)H(6) is isomorphous with 1.C(4)H(8)O at 213 and 295 K and has rigorously symmetrical molecules at these two temperatures. Between 213 and 120 K the space group changes from Pccn to P2(1)/c, so that a symmetrical arrangement is no longer required and the two Co-Co distances then differ slightly (by 0.013 A). For 1.C(6)H(6) there is a phase change between 316 K (Pca2(1)) and 260 K (Pna2(1)). At all four temperatures, however, the molecule is almost symmetrical, with the two independent Co-Co distances never differing by more than 0.026 A. 1.1.75C(7)H(8).0.5C(6)H(14) contains, at all temperatures between 90 and 298 K, two crystallographically independent molecules, each of which is distinctly unsymmetrical at 298 K (Co-Co distances of 2.312(2) and 2.442(2) A for one and 2.310(2) and 2.471(2) for the other). In the first of these the distances converge to a much smaller separation (0.056 A) at 90 K while in the second the difference decreases to only 0.006 A at 90 K. Magnetic susceptibility measurements from 1.8 to 350 K indicate in each case that a gradual spin crossover, from a doublet to a quartet state, occurs over this temperature range.
The anion of 2,6-di(phenylimino)piperidine (DPhIP) has been found to support linear chains of three metal atoms. Three new compounds, [Cr3(DPhIP)4Cl]Cl.(1).5CH2Cl2.0.5H2O (1.1.5CH2Cl2.0.5H2O), [Cr3(DPhIP)4(CH3CN)]- (PF6)2.H2O.4CH3CN (2.H2O.4CH3CN), and [Cr3(DPhIP)4(F)(CH3CN)](BF4)2.5CH3CN (3.5CH3CN), have been synthesized and characterized by X-ray crystallography. Compound 1 has a linear chain of three chromium atoms arranged in an unsymmetrical fashion, with two of them forming a quadruply bonded unit (Cr-Cr distance 1.932(2) A) and the third being a non-metal-metal-bound 5-coordinate unit (Cr...Cr distance 2.659(2) A). The fifth coordination site is occupied by a chloride ion, and another chloride ion is located in the interstices of the crystal. The trimetal unit in compound 2 is structurally similar to that in compound 1 except that the axial ligand in 2 is a CH3CN molecule. Compound 3 is an oxidation product prepared by reaction of 1 with AgBF4. Here, a square pyramidal CrIII unit, FCrN4, and a Cr-Cr quadruply bonded (Cr-Cr distance 1.968(2) A) unit, with an axially coordinated acetonitrile molecule, form the trichromium chain. The CrIII...CrII separation of 2.594(2) A in 3 is too long to be considered a bonding interaction.
The quadruply bonded compound Mo2(DpyF)4 (1), where DpyF- is the anion of N,N'-di(2-pyridyl)formamidine, has been prepared by ligand substitution reactions of Mo2(OOCCF3)4 and either the neutral ligand, HDpyF, at ambient temperature or its lithium salt, LiDpyF, under refluxing conditions. An X-ray structural analysis shows that 1 has a paddlewheel structure with a [symbol: see text] distance of 2.1108(6) A. Reaction of 1 with CoCl2 in methanol produces the paramagnetic compound [Mo2Co(DpyF)4][CoCl4].2MeOH (2). The Co(II) atom in the cation [Mo2Co(DpyF)4]2+ resides on a low-spin hexacoordinate environment (S = 1/2) with a Co...Mo separation of 2.979(6) A, suggesting there is no direct bonding interaction between the Co and Mo atoms. The Mo-Mo distance of 2.1096(5) A is similar to that in 1. Reaction of 1 and CuCl in methanol yields [Mo2Cu4(DpyF)4Cl2][CuCl2]2.2MeOHxEt2O (3). In the cation there are two copper atoms on each side of the Mo2 core. Each is coordinated to two pyridyl nitrogen atoms of the cis DpyF- ligands and loosely bridged to the other by a chloride ion. As a result, the Cu(I) atoms are not aligned with the Mo2 unit. The Cu to Mo separations are in the range 3.003(1)-3.015(1) A, and the Mo-Mo distance of 2.127(1) A is comparable to those in 1 and 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.