We present FLAIR, an NLP framework designed to facilitate training and distribution of state-of-the-art sequence labeling, text classification and language models. The core idea of the framework is to present a simple, unified interface for conceptually very different types of word and document embeddings. This effectively hides all embedding-specific engineering complexity and allows researchers to "mix and match" various embeddings with little effort. The framework also implements standard model training and hyperparameter selection routines, as well as a data fetching module that can download publicly available NLP datasets and convert them into data structures for quick set up of experiments. Finally, FLAIR also ships with a "model zoo" of pre-trained models to allow researchers to use state-of-the-art NLP models in their applications. This paper gives an overview of the framework and its functionality.
We present a novel, quantitative view on the human athletic performance of individual runners. We obtain a predictor for running performance, a parsimonious model and a training state summary consisting of three numbers by application of modern validation techniques and recent advances in machine learning to the thepowerof10 database of British runners’ performances (164,746 individuals, 1,417,432 performances). Our predictor achieves an average prediction error (out-of-sample) of e.g. 3.6 min on elite Marathon performances and 0.3 seconds on 100 metres performances, and a lower error than the state-of-the-art in performance prediction (30% improvement, RMSE) over a range of distances. We are also the first to report on a systematic comparison of predictors for running performance. Our model has three parameters per runner, and three components which are the same for all runners. The first component of the model corresponds to a power law with exponent dependent on the runner which achieves a better goodness-of-fit than known power laws in the study of running. Many documented phenomena in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods including Riegel’s formula, the Purdy points scheme, the power law for world records performances and the broken power law for world record speeds may be explained on the basis of our findings in a unified way. We provide strong evidence that the three parameters per runner are related to physiological and behavioural parameters, such as training state, event specialization and age, which allows us to derive novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our findings will be vital in exercise physiology, race planning, the study of aging and training regime design.
Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change point detection, which is based on an extended version of Stationary Subspace Analysis. We reduce the dimensionality of the data to the most non-stationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data we show that the accuracy of three change point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.
Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.