Luminescent solar concentrators enhance the power output of solar cells through wave-guided luminescent emission and have great potential as building-integrated photovoltaics. Luminescent solar concentrators with a variety of geometries and absorbing–emitting materials have been reported in the literature. As the breadth of available experimental configurations continues to grow, there is an increasing need for versatile Monte Carlo ray-tracing simulation tools to analyze the performance of these devices for specific applications. This paper presents the framework for a Monte Carlo ray-tracing simulation tool that can be used to analyze a host of three-dimensional geometries. It incorporates custom radiative transport models to consider the effects of scattering from luminescent media, while simultaneously modeling absorption and luminescent emission. The model is validated using experimental results for three-dimensional planar and wedge-shaped luminescent solar concentrators employing scattering phosphor films. Performance was studied as a function of length, wavelength, and the angle of incidence of incoming light. The data for the validation studies and the code (written using the Python programming language) associated with the described model are publically available.
Research in asymmetric light transmission interfaces has been recently gaining traction. While traditionally considered for optical circuitry applications, there is a new interest to use these interfaces in luminescent solar concentrators. Previous studies have shown that applying them to the top surface of a concentrator could mitigate surface losses. This paper presents experimental results for proof-of-concept asymmetric light transmission interfaces that may have potential applications in luminescent solar concentrators. The interfaces and the underneath substrate were created in a single step from polydimethylsiloxane using silicon molds fabricated on <100> wafers via anisotropic wet etching. The resulting structures were pyramidal in shape. Large surface areas of nanostructures repeating at 800 nm, 900 nm, and 1000 nm were tested for backward and forward transmission using a spectrometer. Results showed a 21%, 10%, and 0% average transmissivity difference between the forward and backward directions for each periodicity, respectively. The trends seen experimentally were confirmed numerically via COMSOL simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.