It is known that photons produced by spontaneous parametric down-conversion can be coupled into optical fibers more efficiently by focusing the pump field. We find that focusing the pump in type-II down-conversion causes photons of ordinary and extraordinary polarization to acquire very different angular spreads, which amounts to spatial information that distinguishes between the polarization states. Numerical studies predict that the photons collected by a detector or quantum channel will be of predominantly one polarization and that the degree of polarization entanglement will be lessened in some cases.
Project SEE (Satellite Energy Exchange) is an international effort to organize a new space mission for fundamental measurements in gravitation, including tests of the equivalence principle (EP) by composition dependence (CD) and inverse-square-law (ISL) violations, determination of G, and a test for non-zero G-dot. The CD tests will be both at intermediate distances (a few metres) and at long distances (radius of the Earth, RE). Thus, a SEE mission would obtain accurate information self-consistently on a number of distinct gravitational effects. The EP test by CD at distances of a few metres would provide confirmation of earlier, more precise experiments. All other tests would significantly improve our knowledge of gravity. In particular, the error in G is projected to be less than 1 ppm. Project SEE entails launching a dedicated satellite and making detailed observations of free-floating test bodies within its experimental chamber.
Challenges facing the deployment of quantum key distribution (QKD) systems in critical infrastructure protection applications include the optical loss-key rate tradeoff, addition of network clients, and interoperability of vendor-specific QKD hardware. Here, we address these challenges and present results from a recent field demonstration of three QKD systems on a real-world electric utility optical fiber network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.