Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbonconcentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.
Species within the genus Quercus (oak) hybridize in complex patterns that have yet to be fully explored with phylogenomic data. Analyses to date have recovered reasonable divergent patterns, suggesting that the impact of introgression may not always be obvious in inferred oak phylogenies. We explore this phenomenon using RADseq data for 136 samples representing 54 oak species by conducting phylogenetic analyses designed to distinguish signals of lineage diversification and hybridization, focusing on the lobed-leaf species Quercus gambelii, Q. lobata, and Q. garryana in the context of a broad sampling of allied white oaks (Quercus section Quercus), and particularly the midwestern Q. macrocarpa. We demonstrate that historical introgressive hybridization between once sympatric species affects phylogeny estimation. Historical range expansion during periods of favorable climate likely explains our observations; analyses support genetic exchange between ancestral populations of Q. gambelii and Q. macrocarpa. We conclude that the genomic consequences of introgression caused the attraction of distant lineages in phylogenetic tree space, and that introgressive and divergent signals can be disentangled to produce a robust estimate of the phylogenetic history of the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.