Migration is a fundamental aspect of the life history of many fish and must be well understood for targeted conservation and management. We used acoustic telemetry and otolith 87Sr/86Sr analysis, in conjunction with annual ageing, to study intraspecific variation in barramundi Lates calcarifer migration in the Northern Territory, Australia. Acoustic transmitters were implanted into 25 barramundi (420–1010-mm total length (TL); median 510mm TL) from freshwater reaches of the South Alligator River and their movements tracked over >2 years. 87Sr/86Sr transect analysis was also conducted on otoliths of 67 barramundi from the Daly, Mary, South Alligator and Roper rivers. Acoustic telemetry showed that most fish remained in fresh water across wet and dry seasons. Higher rates of movement occurred during the wet season and a minority of fish moved into the estuary during high flows. Otolith chemistry analyses revealed high diversity in salinity histories among individuals. We integrated the telemetry and otolith chemistry data to examine migration as a function of the stage of sexual development, and have proposed a revised life history model that identifies three migratory contingents. We conclude that anthropogenic disturbance, including modified river hydrology, has the potential to alter the frequency of life history contingents in barramundi populations.
Natural river floodplains are among the Earth's most biologically diverse and productive ecosystems but face a range of critical threats due to human disturbance. Understanding the ecological processes that support biodiversity and productivity in floodplain rivers is essential for their future protection and rehabilitation. Fish assemblage structure on tropical river floodplains is widely considered to be driven by dispersal limitation during the wet season and by environmental filtering and interspecific interactions during the dry season. However, the individual‐level movement behaviours (e.g. site attachment, nomadism, homing) that regulate dispersal of fish on floodplains are poorly understood. We combined radiotelemetry and remote sensing to examine the movement behaviour of two large‐bodied fishes (barramundi Lates calcarifer, forktail catfish Neoarius leptaspis) over the flood cycle in a tropical river‐floodplain system in northern Australia to: (a) quantify movement responses in relation to dynamic habitat resources at a landscape scale; and (b) determine the extent of spatial ‘reshuffling’ of individual fish following the wet season. Both species altered their behaviour rapidly in response to changes in the availability and distribution of aquatic habitat, with most individuals undertaking extensive movements (up to ~27 km from the tagging location) on the inundated floodplain during the wet season. Although there was considerable individual variation in movement patterns, overall barramundi distributions closely tracked the extent of floodplain primary productivity, whereas catfish distributions were most closely associated with the extent of flooded area. Most individuals of both species exhibited homing back to previously occupied dry season refugia during the wet‐to‐dry transition, even though other potential refugia were available in closer proximity to wet season activity areas. We postulate that homing behaviour modulates temporal variation in fish assemblage composition and abundance and limits the transfer of aquatic‐derived energy and nutrients into terrestrial food webs by reducing fish mortality on drying floodplains. Our study demonstrates the importance of quantifying individual‐level behaviour across the three stages of dispersal (emigration, inter‐patch movement, immigration) for our understanding of how animal movement influences energetic subsidies and other large‐scale ecosystem processes.
Wet–dry tropical rivers are characterised by highly predictable, yet highly variable, seasonal flow regimes. The wet season is often regarded as an important period of ecosystem productivity, dispersal and connectivity, and also for freshwater-fish spawning and recruitment. However, few studies have examined fish spawning across hydrological seasons in these rivers. We conducted a pilot study to determine (1) the temporal occurrence (and hence spawning period), and (2) the suitability of standard sampling methods of young fish in the Daly River, Northern Territory, Australia. Fish spawned throughout the year, with spawning phenologies varying substantially among species. The highest diversity and abundance of young fish occurred during the wet season, although early life stages of a high number of species were also present in the dry-season and transition periods. A high number of species spawned all year round, whereas other species had very discrete spawning periods. Three of the four sampling methods tested were successful in catching early life stages and should be employed in future studies. The present study highlighted that all hydrological seasons in the wet–dry tropics are important for fish spawning, and has important implications for future research on the drivers of spawning patterns, and for predicting the effects of flow modifications on freshwater fishes of the wet–dry tropics.
The modification of river flow regimes poses a significant threat to the world’s freshwater ecosystems. Northern Australia’s freshwater resources, particularly dry season river flows, are being increasingly modified to support human development, potentially threatening aquatic ecosystems and biodiversity, including fish. More information is urgently needed on the ecology of fishes in this region, including their habitat requirements, to support water policy and management to ensure future sustainable development. This study used electrofishing and habitat survey methods to quantify the dry season habitat use of 20 common freshwater fish taxa in the Daly River in Australia’s wet-dry tropics. Of twenty measured habitat variables, water depth and velocity were the two most important factors discriminating fish habitat use for the majority of taxa. Four distinct fish habitat guilds were identified, largely classified according to depth, velocity and structural complexity. Ontogenetic shifts in habitat use were also observed in three species. This study highlights the need to maintain dry season river flows that support a diversity of riverine mesohabitats for freshwater fishes. In particular, shallow fast-flowing areas provided critical nursery and refuge habitats for some species, but are vulnerable to water level reductions due to water extraction. By highlighting the importance of a diversity of habitats for fishes, this study assists water managers in future decision making on the ecological risks of water extractions from tropical rivers, and especially the need to maintain dry season low flows to protect the habitats of native fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.