The enzyme DNA topoisomerase II, which removes the catenations formed between the DNA molecules of sister chromatids during replication and is a structural component of chromosome cores, is needed for chromosome condensation in yeast and in Xenopus extracts. Inhibitors of topoisomerase II arrest mammalian cells before mitosis in the G2 phase of the cell cycle, but also produce DNA damage, which causes arrest through established checkpoint controls. It is open to question whether cells need topoisomerase II to leave G2, or control late-cycle progression in response to its activity. Bisdioxopiperazines are topoisomerase II inhibitors that act without producing direct DNA damage; the most potent, ICRF-193, blocks mammalian entry into but not exit from mitosis. Here we show that checkpoint-evading agents such as caffeine override this block to produce abortively condensed chromosomes, indicating that topoisomerase II is needed for complete condensation. We find that exit from G2 is regulated by a catenation-sensitive checkpoint mechanism which is distinct from the G2-damage checkpoint.
Rad23 is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitin-associated (UBA) domain is evolutionarily conserved from yeast to humans. However, the cellular function of UBA domains is not completely understood. Recently, RAD23 and DDI1, both DNA damage-inducible genes encoding proteins with UBA domains, were implicated genetically in Pds1-dependent mitotic control in yeast. The UBA domains of RAD23 and DDI1 are required for these interactions. Timely degradation of Pds1 via the ubiquitin/proteasome pathway allows anaphase onset and is crucial for chromosome maintenance. Here, we show that Rad23 and Ddi1 interact directly with ubiquitin and that this interaction is dependent on their UBA domains, providing a possible mechanism for UBA-dependent cell cycle control. Moreover, we show that a hydrophobic surface on the UBA domain, which from structural work had been predicted to be a protein-protein interaction interface, is indeed required for ubiquitin binding. By demonstrating that UBA domains interact with ubiquitin, we have provided the first indication of a cellular function for the UBA domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.