The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.
The tip of a scanning tunnelling microscope is an atomic-scale source of electrons and holes. As the injected charge spreads out, it can induce adsorbed molecules to react. By comparing large-scale ‘before' and ‘after' images of an adsorbate covered surface, the spatial extent of the nonlocal manipulation is revealed. Here, we measure the nonlocal manipulation of toluene molecules on the Si(111)-7 × 7 surface at room temperature. Both the range and probability of nonlocal manipulation have a voltage dependence. A region within 5–15 nm of the injection site shows a marked reduction in manipulation. We propose that this region marks the extent of the initial coherent (that is, ballistic) time-dependent evolution of the injected charge carrier. Using scanning tunnelling spectroscopy, we develop a model of this time-dependent expansion of the initially localized hole wavepacket within a particular surface state and deduce a quantum coherence (ballistic) lifetime of ∼10 fs.
View the article online for updates and enhancements.
AbstractWe present a scanning tunnelling microscope study of site-specific thermal displacement (desorption or diffusion) of benzene, toluene, and chlorobenzene molecules on the Si(1 1 1)-7×7 surface. Through time-lapse STM imaging and automated image analysis we probe both the chemisorbed and the physisorbed states of these molecules. For the chemisorption to physisorption transition there are distinct site-specific variations in the measured rates, however their kinetic origin is ambiguous. There is also significant variation in the competing rates out of the physisorbed state into chemisorption at the various surface sites, which we attribute to differences in site-specific Arrhenius pre-factors. A prediction of the outcome of the competing rates and pre-factors for benzene over three hours matches experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.