The aim of the study was to design and construct a solar grain dryer integrated with a simple biomass burner using locally available materials. This was to address the limitations of the natural sun drying for example drying exposure, liability to pests and rodents, over-dependence on sun and escalated cost of mechanical dryers. This became beneficial especially in reducing post-harvest losses as well as helping in the preservation of agricultural product. The dryer is composed of solar collector, drying chamber, back-up heater and airflow system. The design was based on the study area of Mau summit located in Nakuru County, Kenya. The average ambient conditions were 26°C air temperature and 72% relative humidity with daily global solar radiation incident on horizontal surface of about 21.6 MJ/m 2 /day. A minimum of 3.77 m 2 solar collector area was required to dry a batch of 100 kg maize grain in 6 h with natural convection from the initial moisture content of 21% to final moisture content of 13% wet basis. A prototype dryer designed was fabricated with minimum collector area of 0.6 m 2 and used in the experiment. Forced convection was employed to reduce drying time. The thermal efficiencies of the solar and solar assisted dryer were 39.9 and 57.7%, respectively. The back-up heating system improved the efficiency of the dryer by 17.8% and reduced drying time substantially.
The ability of superabsorbent polymers (SAP) in drying maize and controlling aflatoxin contamination was studied under different temperatures, drying times and SAP-to-maize ratios. Temperature and drying time showed significant influence on the aflatoxin formation. SAP-to-maize ratios between 1:1 and 1:5 showed little or no aflatoxin contamination after drying to the optimal moisture content (MC) of 13 %, while for ratios 1:10 and 1:20, aflatoxin contamination was not well controlled due to the overall higher MC and drying time, which made these ratios unsuitable for the drying process. Results clearly show that temperature, frequency of SAP change, drying time and SAP-to-maize ratio influenced the drying rate and aflatoxin contamination. Furthermore, it was shown that SAP had good potential for grain drying and can be used iteratively, which can make this system an optimal solution to reduce aflatoxin contamination in maize, particular for developing countries and resource-lacking areas.
Controlled drying preserves African leafy vegetables and fight micronutrient deficiency during droughts. The palisade parenchyma cell length determines their rehydration capacity and starch granules the texture upon cooking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.