British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain.
British population history has been shaped by a series of immigrations and internal movements, including the early Anglo--Saxon migrations following the breakdown of the Roman administration after 410CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole--genome sequences generated from ten ancient individuals found in archaeological excavations close to Cambridge in the East of England, ranging from 2,300 until 1,200 years before present (Iron Age to Anglo--Saxon period). We use present--day genetic data to characterize the relationship of these ancient individuals to contemporary British and other European populations. By analyzing the distribution of shared rare variants across ancient and modern individuals, we find that today's British are more similar to the Iron Age individuals than to most of the Anglo--Saxon individuals, and estimate that the contemporary East English population derives 30% of its ancestry from Anglo--Saxon migrations, with a lower fraction in Wales and Scotland. We gain further insight with a new method, rarecoal, which fits a demographic model to the distribution of shared rare variants across a large number of samples, enabling fine scale analysis of subtle genetic differences and yielding explicit estimates of population sizes and split times. Using rarecoal we find that the ancestors of the Anglo--Saxon samples are closest to modern Danish and Dutch populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain.
Ancient DNA traces the history of hepatitis B Hepatitis B virus (HBV) infections represent a worldwide human health concern. To study the history of this pathogen, Kocher et al . identified 137 human remains with detectable levels of virus dating between 400 and 10,000 years ago. Sequencing and analyses of these ancient viruses suggested a common ancestor between 12,000 and 20,000 years ago. There is no evidence indicating that HBV was present in the earliest humans as they spread out of Africa; however, HBV was likely present in human populations before farming. Furthermore, the virus was present in the Americas by about 9000 years ago, representing a lineage sister to the viral strains found in Eurasia that diverged about 20,000 years ago. —LMZ
The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2–4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans—including 278 individuals from England—alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.
Archaeologists have often taken it for granted that death is a taboo topic in modern society. However, the fear of death hypothesis is contested within the social sciences, so does it still follow that the display of the ancient dead is in some way shameful or unacceptable? In this paper it is argued that death is not taboo and that modern death scholars use archaeological source material as a way to understand the subtlety of the human experience. Funerary archaeology is not a dangerous topic; rather it makes a very real and valuable contribution to modern society, providing one of the few ways that people can experience a corpse and so explore their own mortality and with it their place within the larger human story.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.