Schizophrenia and bipolar disorder share a number of common features, both symptomatically and biologically. Abnormalities in the neuroimmune and the stress-signaling pathways have been previously identified in brains of individuals with both diseases. However, the possible relationship between abnormalities in stress and neuroimmune signaling within the cortex of people with psychotic illness has not been defined. To test the hypothesis that combined alterations in brain stress responsiveness and neuroimmune/inflammatory status are characteristic of some individuals suffering from major mental illness, we examined gene expression in the Stanley Array Cohort of 35 controls, 35 individuals with schizophrenia and 34 individuals with bipolar disorder. We used levels of 8 inflammatory-related transcripts, of which SERPINA3 was significantly elevated in individuals with schizophrenia (F(2,88)=4.137, P<0.05), and 12 glucocorticoid receptor signaling (stress) pathway transcripts previously examined, to identify two clusters of individuals: a high inflammation/stress group (n=32) and a low (n=68) inflammation/stress group. The high inflammation/stress group has a significantly greater number of individuals with schizophrenia (n=15), and a trend toward having more bipolar disorder individuals (n=11), when compared with controls (n=6). Using these subgroups, we tested which microarray-assessed transcriptional changes may be associated with high inflammatory/stress groups using ingenuity analysis and found that an extended network of gene expression changes involving immune, growth factors, inhibitory signaling and cell death factors also distinguished these groups. Our work demonstrates that some of the heterogeneity in schizophrenia and bipolar disorder may be partially explained by inflammation/stress interactions, and that this biological subtype cuts across Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined categories.
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.