The primary muscle disorders are a diverse group of diseases caused by various defective structural proteins, abnormal signaling molecules, enzymes and proteins involved in posttranslational modifications, and other mechanisms. Although there is increasing clarification of the primary aberrant cellular processes responsible for these conditions, the decisive factors involved in the secondary pathogenic cascades are still mainly obscure. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs regulated during the degenerative process of muscle to gain insight into the specific regulation of genes that are disrupted in pathological muscle conditions. We describe 185 miRNAs that are up- or down-regulated in 10 major muscular disorders in humans [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, limb-girdle muscular dystrophies types 2A and 2B, Miyoshi myopathy, nemaline myopathy, polymyositis, dermatomyositis, and inclusion body myositis]. Although five miRNAs were found to be consistently regulated in almost all samples analyzed, pointing to possible involvement of a common regulatory mechanism, others were dysregulated only in one disease and not at all in the other disorders. Functional correlation between the predicted targets of these miRNAs and mRNA expression demonstrated tight posttranscriptional regulation at the mRNA level in DMD and Miyoshi myopathy. Together with direct mRNA–miRNA predicted interactions demonstrated in DMD, some of which are involved in known secondary response functions and others that are involved in muscle regeneration, these findings suggest an important role of miRNAs in specific physiological pathways underlying the disease pathology.
The genomic sequencing classifier demonstrates high sensitivity and accuracy for identifying benign nodules. Its 36% increase in specificity compared with the gene expression classifier potentially increases the number of patients with benign nodules who can safely avoid unnecessary diagnostic surgery.
BACKGROUND Bronchoscopy is frequently nondiagnostic in patients with pulmonary lesions suspected to be lung cancer. This often results in additional invasive testing, although many lesions are benign. We sought to validate a bronchial-airway gene-expression classifier that could improve the diagnostic performance of bronchoscopy. METHODS Current or former smokers undergoing bronchoscopy for suspected lung cancer were enrolled at 28 centers in two multicenter prospective studies (AEGIS-1 and AEGIS-2). A gene-expression classifier was measured in epithelial cells collected from the normal-appearing mainstem bronchus to assess the probability of lung cancer. RESULTS A total of 639 patients in AEGIS-1 (298 patients) and AEGIS-2 (341 patients) met the criteria for inclusion. A total of 43% of bronchoscopic examinations were non-diagnostic for lung cancer, and invasive procedures were performed after bronchoscopy in 35% of patients with benign lesions. In AEGIS-1, the classifier had an area under the receiver-operating-characteristic curve (AUC) of 0.78 (95% confidence interval [CI], 0.73 to 0.83), a sensitivity of 88% (95% CI, 83 to 92), and a specificity of 47% (95% CI, 37 to 58). In AEGIS-2, the classifier had an AUC of 0.74 (95% CI, 0.68 to 0.80), a sensitivity of 89% (95% CI, 84 to 92), and a specificity of 47% (95% CI, 36 to 59). The combination of the classifier plus bronchoscopy had a sensitivity of 96% (95% CI, 93 to 98) in AEGIS-1 and 98% (95% CI, 96 to 99) in AEGIS-2, independent of lesion size and location. In 101 patients with an intermediate pretest probability of cancer, the negative predictive value of the classifier was 91% (95% CI, 75 to 98) among patients with a nondiagnostic bronchoscopic examination. CONCLUSIONS The gene-expression classifier improved the diagnostic performance of bronchoscopy for the detection of lung cancer. In intermediate-risk patients with a nondiagnostic bronchoscopic examination, a negative classifier score provides support for a more conservative diagnostic approach. (Funded by Allegro Diagnostics and others; AEGIS-1 and AEGIS-2 ClinicalTrials.gov numbers, NCT01309087 and NCT00746759.)
BackgroundThe gene expression profile of cytologically-normal bronchial airway epithelial cells has previously been shown to be altered in patients with lung cancer. Although bronchoscopy is often used for the diagnosis of lung cancer, its sensitivity is imperfect, especially for small and peripheral suspicious lesions. In this study, we derived a gene expression classifier from airway epithelial cells that detects the presence of cancer in current and former smokers undergoing bronchoscopy for suspect lung cancer and evaluated its sensitivity to detect lung cancer among patients from an independent cohort.MethodsWe collected bronchial epithelial cells (BECs) from the mainstem bronchus of 299 current or former smokers (223 cancer-positive and 76 cancer-free subjects) undergoing bronchoscopy for suspected lung cancer in a prospective, multi-center study. RNA from these samples was run on gene expression microarrays for training a gene-expression classifier. A logistic regression model was built to predict cancer status, and the finalized classifier was validated in an independent cohort from a previous study.ResultsWe found 232 genes whose expression levels in the bronchial airway are associated with lung cancer. We then built a classifier based on the combination of 17 cancer genes, gene expression predictors of smoking status, smoking history, and gender, plus patient age. This classifier had a ROC curve AUC of 0.78 (95% CI, 0.70-0.86) in patients whose bronchoscopy did not lead to a diagnosis of lung cancer (n = 134). In the validation cohort, the classifier had a similar AUC of 0.81 (95% CI, 0.73-0.88) in this same subgroup (n = 118). The classifier performed similarly across a range of mass sizes, cancer histologies and stages. The negative predictive value was 94% (95% CI, 83-99%) in subjects with a non-diagnostic bronchoscopy.ConclusionWe developed a gene expression classifier measured in bronchial airway epithelial cells that is able to detect lung cancer in current and former smokers who have undergone bronchoscopy for suspicion of lung cancer. Due to the high NPV of the classifier, it could potentially inform clinical decisions regarding the need for further invasive testing in patients whose bronchoscopy is non diagnostic.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-015-0091-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.