This paper introduces a new method to solve economic dispatch problem in power system operation with wind farm (WF) connecting. The method is cuckoo search algorithm (CSA) which can to solve effective ED problem. The subject of this paper is optimal solutions about total power output each generator and WF with minimum operation cost in power system. The research study CSA and develop this method which become new method more efficient than former methods. CSA apply to solve ED problem with WF which give the best results and programming time. For ED problem simulator, program applies 30 buses IEEE system and Matpower 4.1 Toolbox to run power system with WF connecting. The results of this method also are compared to other previous methods and assess its results.
This paper proposes a stochastic weight trade-off particle swarm optimization (SWT-PSO) method solving optimal power flow (OPF) problem. The proposed SWT-PSO is a new improvement of PSO method using a stochastic weight trade-off for enhancing search its search ability. The proposed method has been tested on the IEEE 30 bus and 57 bus systems and the obtained results are compared to those from other methods such as conventional PSO, genetic algorithm (GA), ant colony optimization (ACO), evolutionary programming (EP), and differential evolution (DE) methods. The numerical results have indicated that the proposed SWT-PSO method is better than the others in terms of total fuel costs, total loss and computational times. Therefore, the proposed SWT-PSO method can be a favorable method for solving OPF problem.
This paper proposes a simple particle swarm optimization with constriction factor (PSO-CF) method for solving optimal reactive power dispatch (ORPD) problem. The proposed PSO-CF is the conventional particle swarm optimization based on constriction factor which can deal with different objectives of the problem such as minimizing the real power losses, improving the voltage profile, and enhancing the voltage stability and properly handle various constraints for reactive power limits of generators and switchable capacitor banks, bus voltage limits, tap changer limits for transformers, and transmission line limits. The proposed method has been tested on the IEEE 30-bus and IEEE 118-bus systems and the obtained results are compared to those from other PSO variants and other methods in the literature. The result comparison has shown that the proposed method can obtain total power loss, voltage deviation or voltage stability index less than the others for the considered cases. Therefore, the proposed PSO-CF can be favorable solving the ORPD problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.