We investigate how automated, data-driven, personalized feedback in a large-scale intelligent tutoring system (ITS) improves student learning outcomes. We propose a machine learning approach to generate personalized feedback, which takes individual needs of students into account. We utilize state-of-the-art machine learning and natural language processing techniques to provide the students with personalized hints, Wikipedia-based explanations, and mathematical hints. Our model is used in Korbit, 5 a largescale dialogue-based ITS with thousands of students launched in 2019, and we demonstrate that the personalized feedback leads to considerable improvement in student learning outcomes and in the subjective evaluation of the feedback.
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.
We present Korbit, a large-scale, open-domain, mixed-interface, dialogue-based intelligent tutoring system (ITS). Korbit uses machine learning, natural language processing and reinforcement learning to provide interactive, personalized learning online. Korbit has been designed to easily scale to thousands of subjects, by automating, standardizing and simplifying the content creation process. Unlike other ITS, a teacher can develop new learning modules for Korbit in a matter of hours. To facilitate learning across a wide range of STEM subjects, Korbit uses a mixed-interface, which includes videos, interactive dialogue-based exercises, question-answering, conceptual diagrams, mathematical exercises and gamification elements. Korbit has been built to scale to millions of students, by utilizing a state-of-the-art cloud-based micro-service architecture. Korbit launched its first course in 2019 and has over 7, 000 students have enrolled. Although Korbit was designed to be open-domain and highly scalable, A/B testing experiments with real-world students demonstrate that both student learning outcomes and student motivation are substantially improved compared to typical online courses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.