The key challenges of local sensor networks are in supporting high sensor density, information security, physical size, and especially energy efficiency at a level that could eliminate the need for batteries or external power supplies. This article presents a novel scheme that answers all issues at the cost of minor information losses in low data rate applications that tolerate latency. Experimental verification is made using a sensor node implemented on a flexible electronics platform. Lightly encrypted data are transmitted by embedding it into Bluetooth advertising packets, contributing to ultralow-energy wireless power consumption, and theoretically enabling an unlimited number of nodes in the local network. In the experiments, the energy dissipation per transmitted 14-B information packet varied between 19.83 and 105.93 µW depending on the system configuration, while the data loss rates ranged from 7.4% to 0.004%, respectively. As the flexible substrate can be attached to various surfaces, the applications extend from wearable to industrial condition monitoring devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.