PurposeThe existing dimensionality reduction algorithms suffer serious performance degradation under low signal-to-noise ratio (SNR) owing to the presence of noise. To address these problems, an enhanced spatial smoothing scheme is proposed that exploits the subarray time-space correlation matrices to reconstruct the data matrix to overcome this weakness. This method uses the strong correlation of signal and the weak correlation of noise in time and space domains, which improves the noise suppression ability.Design/methodology/approachIn this paper, an enhanced spatial smoothing method is proposed. By using the strong correlation of signal and the weak correlation of noise, the time-space smoothed array covariance matrix based on the subarray time-space correlation matrices is constructed to improve the noise suppression ability. Compared with the existing Toeplitz matrix reconstruction and spatial smoothing methods, the proposed method improves the DOA estimation performance at low SNR.FindingsTheoretical analysis and simulation results show that compared with the existing dimensionality reduction processing algorithms, the proposed method improves the DOA estimation performance in cases with a low SNR. Furthermore, in cases where the DOAs between the coherent sources are closely spaced and the snapshot number is low, our proposed method significantly improves the performance of the DOA estimation performance.Originality/valueThe proposed method improves the DOA estimation performance at low SNR. In particular, for the cases with a low SNR, the proposed method provides a better RMSE. The convergence of the proposed method is also faster than other methods for the low number of snapshots. Our analysis also confirms that in cases where the DOAs between the coherent sources are closely spaced, the proposed method achieves a much higher angular resolution than that of the other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.