It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano-Se. Since both GST and small molecular weight selenocompounds accumulated in vivo are important intermediates for chemoprevention by Se, our results also suggest that Nano-Se should be most effective as a chemopreventive agent at smaller particle size.
Background: Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results: After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion:The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods.
Selenium (Se) at supranutritional levels can enhance the activity of glutathione S-transferase (GST), whose gene is a target of nuclear factor erythroid-2 related factor 2 (Nrf2). Recent studies indicated that the thioredoxin reductase 1 (TrxR1) gene could also be targeted by Nrf2. Thus, high-dose Se may stimulate TrxR1 provided it enhances GST activity. Indeed, one study found that Se at supranutritional levels transiently increased hepatic TrxR1 activity. However, another study reported that supranutritional Se had no such effect on hepatic TrxR1 activity. In view of this discrepancy, the present research investigated whether high-dose Se has any impact on hepatic TrxR1. Moreover, we investigated whether Se preferentially activates GST over TrxR1. We observed that when sodium selenite (SS) caused liver injury, both hepatic TrxR1 activity and hepatic GST activity increased. Further experiments indicated that SS increased hepatic GST activity at either toxic or high but non-toxic dose levels; however, increase in hepatic TrxR1 activity occurred only at toxic levels, suggesting that enhanced TrxR1 activity correlates with liver injury. To corroborate this, we showed that hepatotoxic agents, thioacetamide or carbon tetrachloride, caused marked increases in hepatic TrxR1 activity. In conclusion, high-dose SS indeed can enhance hepatic TrxR1 activity, but only on the condition that it causes liver injury. High-dose SS affects hepatic GST more readily than hepatic TrxR1. Thus, the cancer-preventive mechanism of Se at non-toxic supranutritional levels relies more on its modulation of GST rather than TrxR1, at least in liver tissue.
Sodium selenosulfate has been extensively used as a precursor of selenide ions in the preparation of nano Se-containing compounds. Its biological properties remain completely unknown. Sodium selenosulfate and sodium selenite were added to the medium of HepG2 cells and administered intraperitoneally at a dose of 0.1 mg Se/kg body weight to selenium-deficient mice, respectively. Both of the selenium compounds could increase the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) in a dose-dependent manner in cells and efficiently restore selenium retention and activities of GPx and TrxR in mice. All of the variables were in correlation with the Se supply. There was no distinction in elevating activities of GPx and TrxR between selenosulfate and selenite in vitro. After a 2-d supply of selenosulfate, the activity of GPx in the liver was 65% (p<0.001) and Se accumulations in the liver, kidney and blood were 64%, 86%, and 65%, respectively, of those treated with selenite (all p<0.01). With the 7-d selenosulfate supplementation, the activity of GPx in the kidney and activities of TrxR in the liver and kidney were 88%, 75%, and 78%, respectively, of those treated with selenite (all p<0.01); Se retentions in the liver and kidney were 85% and 93%, respectively of those supplemented with selenite (both p<0.01). These facts indicated that selenosulfate could be absorbed and utilized in the biological system. No difference in vitro demonstrated that selenosulfate could be absorbed and generate reduced selenide as efficiently as selenite. The differences between the two compounds in vivo were the result of other factors that affected selenosulfate utilization in tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.