Azoles and their derivatives are known for their corrosion inhibition ability for copper. For this reason the bonding of imidazole, triazole, and tetrazole-used as archetypal models of azole corrosion inhibitors-to Cu2O(111) and Cu2O(111)-w/o-Cu(CUS) was characterized using density functional theory (DFT) calculations. The former surface contains coordinatively-saturated (CSA) and coordinatively-unsaturated (CUS) Cu sites, whereas the latter lacks the CUS sites. We find that the molecules preferentially bond with a single unsaturated N atom to a surface Cu ion and concomitantly form a hydrogen bond with the surface O ion. They adsorb rather strongly at CUS sites with an adsorption energy of about -1.6 eV (as calculated with the PBE functional), whereas the bonding at CSA sites is about three times weaker thus being similar as on metallic Cu(111). The impact of van der Waals dispersion interactions on molecular adsorption bonding is also addressed. Depending on specifics of the adsorption structure, they strengthen the adsorption bonding by about 0.2-0.5 eV. Due to this specific bonding enhancement, dispersion interactions alter the relative stability of adsorption modes for tetrazole. An atomistic thermodynamics approach was used to construct two-dimensional phase diagrams for all the three molecules. In the viable range of oxygen chemical potential only three phases appear in the phase-diagrams, two of which are the high coverage (1 × 1) molecular phases (one on Cu2O(111) and the other on Cu2O(111)-w/o-Cu(CUS)) and the third is clean Cu2O(111)-w/o-Cu(CUS). The current results indicate that molecular adsorption at CUS sites is strong enough to compensate the thermodynamic deficiency of stoichiometric Cu2O(111) thus making it more stable than Cu2O(111)-w/o-Cu(CUS), unless the conditions are too oxygen rich and/or for azole lean. This finding may tentatively suggest that the corrosion inhibition capability of azoles stems from their ability to passivate reactive surface sites.
Abstract:The adsorption of three simple azole molecules-imidazole, triazole, and tetrazole-and Cl on various sites of several Cu 2 O(111)-and Cu 2 O(110)-type surfaces, including Cu and O vacancies, was characterized using density functional theory (DFT) calculations; the three molecules can be seen as models of azole corrosion inhibitors and Cl as a corrosion activator. Both non-dissociative and dissociative adsorption modes were considered for azole molecules; the latter involves the N-H bond cleavage, hence we also addressed the adsorption of H, which is a co-product of the dissociative adsorption. We find that molecules and Cl bind much stronger to unsaturated Cu sites compared to saturated ones. Dissociated molecules bind considerably stronger to the surface compared to the intact molecules, although even the latter can bind rather strongly to specific unsaturated Cu sites. Bader analysis reveals that binding energies of dissociated molecules at various Cu sites correlate with Bader charges of Cu ions before molecular adsorption, i.e., the smaller the Cu charge, the stronger the molecular bonding. All three azole molecules display similar non-dissociative adsorption energies, but significant difference between them appears for dissociative adsorption mode, i.e., dissociated triazole and tetrazole bind much stronger than dissociated imidazole because the former two can form two strong N-Cu bonds, but imidazole cannot due to its incompatible molecular geometry. Dissociative adsorption is consequently favorable only for triazole and tetrazole, but only at oxygen vacancy sites, where it proceeds barrierlessly (or almost so). This observation may suggest that, for imidazole, only the neutral form, but, for triazole and tetrazole, also their deprotonated forms are the active species for inhibiting corrosion under near neutral pH conditions, where copper surfaces are expected to be oxidized. As for the comparison with the Cl-surface bonding, the calculations indicate that only dissociated triazole and tetrazole bind strong enough to rival the Cl-surface bonds.
Abstract:The adsorption of imidazole, triazole, and tetrazole-used as simple models of azole corrosion inhibitors-on various Cu 2 O(111)-and Cu 2 O(110)-type surfaces was characterized using density functional theory (DFT) calculations with the focus on lateral intermolecular interactions and the thermodynamic stability of various adsorption structures. To this end, an ab initio thermodynamics approach was used to construct two-dimensional phase diagrams for all three molecules. The impact of van der Waals dispersion interactions on molecular adsorption bonding was also addressed. Lateral intermolecular interactions were found to be the most repulsive for imidazole and the least for tetrazole, for which they are usually even slightly attractive. Both non-dissociative and dissociative adsorption modes were considered and although dissociated molecules bind to surfaces more strongly, none of the considered structures that involve dissociated molecules appear on the phase diagrams. Our results show that the three azole molecules display a strong tendency to preferentially adsorb at reactive coordinatively unsaturated (CUS) Cu surface sites and stabilize them. According to the calculated phase diagrams for Cu 2 O(111)-type surfaces, the three azole molecules adsorb to specific CUS sites, designated as Cu CUS , under all conditions at which molecular adsorption is stable. This tentatively suggests that their corrosion inhibition capability may stem, at least in part, from their ability to passivate reactive surface sites. We further comment on a specific drawback due to neglect of configurational entropy that is usually utilized within the ab initio thermodynamics approach. We analyze the issue for Langmuir and Frumkin adsorption models and show that when configurational entropy is neglected, the ab initio thermodynamics approach is too hasty to predict phase-transition like behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.