Atomic steps at the surface of a catalyst play an important role in heterogeneous catalysis, for example as special sites with increased catalytic activity. Exposure to reactants can cause entirely new structures to form at the catalyst surface, and these may dramatically influence the reaction by 'poisoning' it or by acting as the catalytically active phase. For example, thin metal oxide films have been identified as highly active structures that form spontaneously on metal surfaces during the catalytic oxidation of carbon monoxide. Here, we present operando X-ray diffraction experiments on a palladium surface during this reaction. They reveal that a high density of steps strongly alters the stability of the thin, catalytically active palladium oxide film. We show that stabilization of the metal, caused by the steps and consequent destabilization of the oxide, is at the heart of the well-known reaction rate oscillations exhibited during CO oxidation at atmospheric pressure.
We present room temperature scanning tunneling microscopy and photoemission spectroscopy studies of water adsorption on the Zn-terminated ZnO(0001) surface. Data indicates that the initial adsorption is dissociative leaving hydroxyl groups on the surface. At low water coverage, the adsorption occurs next to the oxygen-terminated step edges, where water is believed to bind to zinc cations leaving off hydrogen atoms to under-coordinated oxygen anions. When increasing the water dose, triangular terraces grow in size and pits diminish until the surface is covered with wide irregular terraces and a large number of small pits. Higher water exposure (20 Langmuir) results in a much more irregular surface. Hydrogen, which is produced in the dissociation reaction is believed to have an important role in the changed surface structure at high exposures. The fact that adsorbed water completely changes the structure of ZnO (0001) is an important finding toward the understanding of this surface at atmospheric conditions.
High-resolution photoemission spectroscopy and scanning tunneling microscopy (STM) have been used to investigate defects on Cu 2 O(111) and their interaction with water and sulfur dioxide (SO 2 ). Two types of point defects, i.e., oxygen and copper vacancies, are identified. Copper vacancies are believed to be the most important defects in both water and SO 2 surface chemistry. Multiply coordinatively unsaturated oxygen anions (O MCUS ) such as oxygen anions adjacent to copper vacancies are believed to be adsorption sites for both water and SO 2 reaction products. Water adsorption at 150 K results in both molecular and dissociated water. Molecular water leaves the surface at 180 K. At 300 K and even more at 150 K, SO 2 interacts with oxygen sites at the surface forming SO 3 species. However, thermal treatment up to 280 K of Cu 2 O(111)/SO 2 prepared at 150 K renders only SO 4 on the surface.
A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies Review of Scientific Instruments 79, 084101 (2008) To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.