Our previous studies have demonstrated that stable microRNAs (miRNAs) in mammalian serum and plasma are actively secreted from tissues and cells and can serve as a novel class of biomarkers for diseases, and act as signaling molecules in intercellular communication. Here, we report the surprising finding that exogenous plant miRNAs are present in the sera and tissues of various animals and that these exogenous plant miRNAs are primarily acquired orally, through food intake. MIR168a is abundant in rice and is one of the most highly enriched exogenous plant miRNAs in the sera of Chinese subjects. Functional studies in vitro and in vivo demonstrated that MIR168a could bind to the human/mouse low-density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA, inhibit LDLRAP1 expression in liver, and consequently decrease LDL removal from mouse plasma. These findings demonstrate that exogenous plant miRNAs in food can regulate the expression of target genes in mammals.
Tumour cells secrete exosomes that are involved in the remodelling of the tumour–stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release.
MicroRNAs (miRNAs) are endogenous noncoding RNAs (~22 nt) that regulate target gene expression at the posttranscriptional level in the cytoplasm. Recent discoveries of the presence of miRNAs and miRNA function-required argonaute family proteins in the cell nucleus have prompted us to hypothesize that miRNAs may also have regulatory functions in the cell nucleus. In this study, we demonstrate that mouse miR-709 is predominantly located in the nucleus of various cell types and that its nuclear localization pattern rapidly changes upon apoptotic stimuli. In the cell nucleus, miR-709 directly binds to a 19-nt miR-709 recognition element on pri-miR-15a/16-1 and prevents its processing into pre-miR-15a/16-1, leading to a suppression of miR-15a/16-1 maturation. Furthermore, nuclear miR-709 participates in the regulation of cell apoptosis through the miR-15a/16-1 pathway. In summary, the present study provides the first evidence that one miRNA can control the biogenesis of other miRNAs by directly targeting their primary transcripts in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.