Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect.
Establishment of both mechanically robust yet facile healable and recyclable epoxy resin systems are highly desirable and still present significant challenges. Herein, by fully utilizing epoxidized vegetable oils and dithiol...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.