Abstract:With the rapid spread of mobile devices, call detail records (CDRs) from mobile phones provide more opportunities to incorporate dynamic aspects of human mobility in addressing societal issues. However, it has been increasingly observed that CDR data are not always representative of the population under study because it only includes device users alone. To understand the discrepancy between the population captured by CDRs and the general population, we profile principal populations of CDRs by analyzing routines based on time spent at key locations and compare these data with those of the general population. We employ a topic model to estimate typical routines of mobile phone users using CDRs as topics. The routines are extracted from field survey data and compared between those of the general population and mobile phone users. We found that there are two main population groups of mobile phone users in Dhaka: males engaged in an income-generating activity at a specific location other than home and females performing household tasks and spending most of their time at home. We determine that CDRs tend to omit students, who form a significant component of the Dhaka population.
Anonymous and aggregated statistics derived from mobile phone data have proven efficacy as a proxy for human mobility in international development work and as inputs to epidemiological modeling of the spread of infectious diseases such as COVID-19. Despite the widely accepted promise of such data for better development outcomes, challenges persist in their systematic use across countries. This is not only the case for steady-state development use cases such as in the transport or urban development sectors, but also for sudden-onset emergencies such as epidemics in the health sector or natural disasters in the environment sector. This article documents an effort to gain systematized access to and use of anonymized, aggregated mobile phone data across 41 countries, leading to fruitful collaborations in nine developing countries over the course of one year. The research identifies recurring roadblocks and replicable successes, offers lessons learned, and calls for a bold vision for future successes. An emerging model for a future that enables steady-state access to insights derived from mobile big data - such that they are available over time for development use cases - will require investments in coalition building across multiple stakeholders, including local researchers and organizations, awareness raising of various key players, demand generation and capacity building, creation and adoption of standards to facilitate access to data and their ethical use, an enabling regulatory environment and long-term financing schemes to fund these activities.
Accurate estimation of elevation is important for many location based services. Although, it is possible to obtain altitude from GPS, its accuracy is unreliable and applicable in outdoors only. It is possible to use barometers on smartphones to estimate elevation in both indoor and outdoor scenarios. To this end, we proposed an integrated framework to provide ubiquitous and accurate elevation measurement using smartphones. Experiments conducted in both indoor and outdoor with different geographical characteristics reveal that our system can provide elevation with an error less than 5 meters in 90 % of the cases and less than 3 meters in 75 % of the cases, which is sufficient for most practical applications.
No abstract
Background Drug-induced toxicity is one of the problems that have negatively impacted on the well-being of populations throughout the world, including Malawi. It results in unnecessary hospitalizations, retarding the development of the country. This study assessed the Malawi Essential Medicines List (MEML) for structural alerts and reactive metabolites with the potential for drug-induced toxicities. Methods This in-silico screening study used StopTox, ToxAlerts and LD-50 values toxicity models to assess the MEML drugs. A total of 296 drugs qualified for the analysis (those that had defined chemical structures) and were screened in each software programme. Each model had its own toxicity endpoints and the models were compared for consensus of their results. Results In the StopTox model, 86% of the drugs had potential to cause at least one toxicity including 55% that had the potential of causing eye irritation and corrosion. In ToxAlerts, 90% of the drugs had the potential of causing at least one toxicity and 72% were found to be potentially reactive, unstable and toxic. In LD-50, 70% of the drugs were potentially toxic. Model consensus evaluation results showed that the highest consensus was observed between ToxAlerts and StopTox (80%). The overall consensus amongst the three models was 57% and statistically significant (p < 0.05). Conclusions A large number of drugs had the potential to cause various systemic toxicities. But the results need to be interpreted cautiously since the clinical translation of QSAR-based predictions depends on many factors. In addition, inconsistencies have been reported between screening results amongst different models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.