,I dunnP restholm, IlirianaQ oqaj, ChristinaB.R iel, To bias V. Rostgaard, Nora Saleh, HannibalM.S chultz, Mark Standland,Jens S. Svenningsen, RasmusTruels Sørensen, JesperV isby,E milie L. Wolff-Sneedorff, Malte Hee Zachariassen, Edmond A. Ziari, Henning O. Sørensen, and Thomas Just Sørensen* [a] To Professor Klaus Bechgaard and Professor ThomasB jørnholm for always teaching to think outside the box Abstract: Ionic self-assembly (ISA) is ap rovenm ethod that exploits non-covalenti nteractions to generate supramolecular materials. Here, we have expanded the scope of this approach fabricating thin films with nanoscopic order maintained over centimeters. Cationiclayers of benzalkonium surfactants form al amellar template. The template is able to host layers of negatively charged polyaromatic functional units, hered emonstrated with b-naphthol-derived azo-dyes. We show that av arietyo ft hese functional building blocks can be incorporated in the lamellar templatet hrough ISA. Sixteen different materials were produced,c haracterized, and processedi nto thin films, with lamellar order perpendicular to the substrate. Thus, ad esign concept is demonstrated in which diverse functional motifs can be isolated and ordered in a2 Dl attice between layers of alkyl chains in bulk and in thin films, in which the molecular orderi sm aintained and alignedt othe substrate.
Maintaining the integrity of the cell plasma membrane (PM) is critical for the survival of cells. While an efficient PM repair machinery can aid survival of healthy cells by preventing influx of extracellular calcium, it can also constitute an obstacle in drug delivery and photothermal therapy. We show how nanoscopic holes can be applied to the cell surface thus allowing identification of molecular components with a pivotal role in PM repair. Cells are punctured by locally heating gold nanostructures at the cell surface which causes nano-ruptures in cellular PMs. Recruitment of annexin V near the hole is found to locally reshape the ruptured plasma membrane. Experiments using model membranes, containing recombinant annexin V, provide further biophysical insight into the ability of annexin V to reshape edges surrounding a membrane hole. The thermoplasmonic method provides a general strategy to monitor the response to nanoscopic injuries to the cell surface.
Self‐Assembly. Self‐organizing materials allow for fabrication of functional nanostructures. A two‐component approach to self‐assembled nanostructures has been developed, which allows for simple preparation of thin films with lamellar molecular order. The nanoscale molecular order is maintained over centimeters and is a direct result of the tailored chemical properties of the materials. Furthermore, the two‐component approach allows for different functions to be incorporated in the thin films. For more information, see the Full Paper on page 253 by Thomas Just Sørensen and co‐workers, which is featured on the back cover. Cover image kindly provided by Merlin von Soosten.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.