Chalcogenide phase‐change materials (PCMs) have offered an appealing material solution by acting as a switchable dielectric layer to tune the electromagnetic properties of terahertz metamaterials and metasurfaces. Here, this work demonstrates large‐scale and lithography‐free manufacturing of all‐PCM terahertz metasurfaces based on direct laser switching of crystalline micro‐domains in a thin film with high switching ratio of the emerging plasmonic PCM, In3SbTe2 (IST). The fabricated high‐quality IST metasurfaces achieve efficient plasmonic resonances and a large modulation depth with ultrafast response (full width at half maxima of the modulation time ≈1.6 ps) in a deep‐subwavelength switching volume. For the dynamic evolution of terahertz resonance modes, theoretical modeling reveals a delicate interplay between amorphous and crystalline IST due to the bonding‐structure‐induced different carrier lifetimes and spatially localized electric fields. These studies open new avenues for realizing all‐PCM terahertz ultrafast nanophotonics.
Thermal radiation modulation facilitated by phase change materials (PCMs) necessitate a large thermal radiation contrast in broadband as well as a non-volatile phase transition, which are only partially satisfied by...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.