Soybean oil heating or cooking is a very complicated process. In order to better understand the composition of the volatile compounds from soybean oil during heating process, volatile profiling was carried out through vacuum‐assisted headspace solid‐phase microextraction combined with GC‐MS. As a result, a total of 72 volatile compounds were detected and identified during this process, including aldehydes (27), alcohols (14), ketones (10), furans (6), aromatic compounds (9), acids, and esters (6). And the forming temperature of each volatile was determined. Results show most of volatile aldehydes and alcohols were formed at 120°C leading to release off‐flavor largely, which was considered as a critical temperature point for the formation of soybean oil flavor during the whole heating process. Meanwhile, ketones and furans were formed at 150°C, and acids were detected at 180°C. The content of most volatile compounds increased significantly with the temperature raised. Simultaneously, results of principal component analysis demonstrate that flavor characteristics of soybean oil have a big difference between higher and lower temperature in the heating process.
Volatile profiling was carried out during heating through vacuum-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry to better understand the flavor forming mechanism of flour products. Ninety-two volatile compounds were detected and identified, including aldehydes (25), ketones (15), alcohols (9), nitrogen- and sulfur-containing compounds (6), benzene derivatives (15), furans (10), and acids and esters (12). The formation temperature of each volatile was also determined. Results showed that temperature played an important role in the formation and content of volatile compounds. In the low-temperature range (60 °C–100 °C), the flavor composition of flour was mainly composed of C6–C10 volatile aldehydes and alcohols. At temperatures exceeding 100 °C, especially at 120 °C, many long carbon chain aldehydes and alcohols, furans, acids, esters, nitrogen- and sulfur-containing compounds were formed. The formation rate of most identified volatile compounds increased during heating, especially from 90 °C to 130 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.