Two different chaos synchronization methods are proposed for a class of energy resource demand supply-system with input constraint. Firstly, chaotic synchronization is achieved for a class of energy resource demand supply system with known system parameters based on the Lyapunov theory. Secondly, an adaptive control approach is investigated for a class of energy resource demand supply system with input constraint, and the parameters of the system are unknown based on the Lyapunov stability and robust adaptive theory. To address the input constraint, new auxiliary signals and design systems are employed. Numerical simulations are provided to illustrate the effectiveness of the proposed approach.
An adaptive neural networks chaos synchronization control method is proposed for a four-dimensional energy resource demand-supply system with input constraints. Assuming the response system contains unknown uncertain nonlinearities and unknown stochastic disturbances, the neural networks and robust terms are used to identify the nonlinearities and overcome the stochastic disturbances, respectively. Based on stochastic Lyapunov stability and robust adaptive theories, an adaptive neural networks synchronization control method is developed. In the design process, an auxiliary design system is employed to address input constraints. Simulation results, which fully coincide with theoretical results, are presented to demonstrate the obtained results.
This paper investigates the vehicle platoon control problems, in which the road-friction coefficient is taken into consideration. In order to improve the vehicle platoon safety in various road-friction conditions, an optimal spacing policy is proposed for the vehicle platoon. In detail, an intervehicle space optimization framework is developed by using a safety cost function and the gradient decent method. In this way, the optimal intervehicle spacing headway is presented such that the vehicle can be safely driven to the desired platoon under various road-friction conditions. Then, based on the proposed optimal spacing policy, we transform this optimal spacing vehicle platoon control problem into a moving target tracking problem. An adaptive distributed integrated sliding mode (DISM)-based vehicle platoon control scheme is proposed such that the vehicles can effectively follow the presented optimal spacing platoon. Moreover, the stability of the proposed vehicle platoon system is strictly analyzed and numerical simulations are provided to verify the proposed approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.