With the involution of pedestrian detection technology, higher requirements are put forward for the detection accuracy under the conditions of insufficient light, target occlusion, and too small scale. Without information and multiscale pedestrian target, visible light single-mode pedestrian detection algorithm has poor performance. To solve the above problems, a pedestrian detection algorithm combining attention mechanism and nonmaximum suppression method is proposed in this study, aiming to improve the accuracy of pedestrian detection. In addition, residual network ResNet-50 and IoU (intersection over union) loss function are also adopted to improve pedestrian detection accuracy. Attention mechanism was used to optimize and highlight pedestrian area features, and meanwhile, the nonmaximum suppression method was applied to improve the robustness of the algorithm. Experimental results show that the detection accuracy of the proposed algorithm is significantly higher than that of the traditional convolutional neural network algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.