The medical team from Xiangya Hospital to support Hubei, China
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Background Coronavirus disease (COVID-19) has resulted in considerable morbidity and mortality worldwide. Thyroid hormones play a key role in modulating metabolism and the immune system. However, the prevalence of thyroid dysfunction (TD) and its association with the prognosis of COVID-19 have not yet been elucidated. In this study, we seek to address this gap and understand the link between TD and COVID-19. Methods Herein, we enrolled patients who were hospitalised with COVID-19 and had normal or abnormal thyroid function test results at the West Court of Union Hospital in Wuhan, China, between 29 January and 26 February 2020. We carried out follow up examinations until 26 April 2020. Data on clinical features, treatment strategies, and prognosis were collected and analysed. TD was defined as an abnormal thyroid function test result, including overt thyrotoxicosis, overt hypothyroidism, subclinical hypothyroidism, subclinical hyperthyroidism, and euthyroid sick syndrome. Results A total of 25 and 46 COVID-19 patients with and without TD, respectively, were included in the study. COVID-19 patients with TD had significantly higher neutrophil counts and higher levels of C-reactive protein, procalcitonin, lactate dehydrogenase, serum creatine kinase, aspartate transaminase, and high-sensitive troponin I and a longer activated partial thromboplastin time but lower lymphocyte, platelet, and eosinophil counts. A longitudinal analysis of serum biomarkers showed that patients with TD presented persistently high levels of biomarkers for inflammatory response and cardiac injury. COVID-19 patients with TD were more likely to develop a critical subtype of the disease. Patients with TD had a significantly higher fatality rate than did those without TD during hospitalisation (20% vs 0%, P<0.0001). Patients with TD were more likely to stay in the hospital for more than 28 days than were those without TD (80% vs 56.52%, P=0.048). Conclusions Our preliminary findings suggest that TD is associated with poor outcomes in patients with COVID-19.
Background We investigated the dynamic changes in lipid profiles and their correlations with disease severity and clinical outcome in patients with severe COVID-19. Methods We retrospectively reviewed 519 severe COVID-19 patients with confirmed outcomes (discharged or deceased), admitted to the West Court of Union Hospital in Wuhan, China, between 29 January and 8 April 2020. Results Altogether, 424 severe COVID-19 patients, including 34 non-survivors and 390 survivors, were included in the final analyses. During hospitalization, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) showed an increasing trend in survivors, but showed a downward trend in non-survivors. The serum concentrations of HDL-C and apoA-I were inversely correlated with C-reactive protein (CRP), length of hospital stay of survivors, and disease severity score. For in-hospital deaths, the areas under the receiver operating characteristic curves (AUCs) of the ratios of CRP/HDL-C and CRP/apoA-I at admission were 0.84 and 0.83, respectively. Moreover, patients with high ratios of CRP/HDL-C (>77.39) or CRP/apoA-I (>72.37) had higher mortality rates during hospitalization (log-rank p < 0.001). Logistic regression analysis demonstrated that hypertension, lactate dehydrogenase, SOFA score, and High CRP/HDL-C ratio were independent predictors of in-hospital mortality. Conclusions During severe COVID-19, HDL-C and apoA-I concentrations are dramatically decreased in non-survivors. Moreover, High CRP/HDL-C ratio is significantly associated with an increase in mortality and a poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.